当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.DataType方法代码示例

本文整理汇总了Python中tensorflow.DataType方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.DataType方法的具体用法?Python tensorflow.DataType怎么用?Python tensorflow.DataType使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.DataType方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _AddParam

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import DataType [as 别名]
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:46,代码来源:graph_builder.py

示例2: _AddParam

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import DataType [as 别名]
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer)
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
开发者ID:coderSkyChen,项目名称:Action_Recognition_Zoo,代码行数:46,代码来源:graph_builder.py


注:本文中的tensorflow.DataType方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。