本文整理汇总了Python中tensorflow.ConfigProto方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.ConfigProto方法的具体用法?Python tensorflow.ConfigProto怎么用?Python tensorflow.ConfigProto使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.ConfigProto方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_session
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def create_session(config_dict=dict(), force_as_default=False):
config = tf.ConfigProto()
for key, value in config_dict.items():
fields = key.split('.')
obj = config
for field in fields[:-1]:
obj = getattr(obj, field)
setattr(obj, fields[-1], value)
session = tf.Session(config=config)
if force_as_default:
session._default_session = session.as_default()
session._default_session.enforce_nesting = False
session._default_session.__enter__()
return session
#----------------------------------------------------------------------------
# Initialize all tf.Variables that have not already been initialized.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
# tf.variables_initializer(tf.report_unitialized_variables()).run()
示例2: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def __init__(self):
self.session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=False))
self.actor = networks.Actor_MLP(scope="actor1",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=True)
self.old_actor = networks.Actor_MLP(scope="actor0",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=False)
self.critic = networks.Critic_MLP(scope="critic1",units=[settings.S_DIM,100,1],activations=[None,'relu',None],trainable=True)
self.state_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.S_DIM])
self.action_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.A_DIM])
self.return_tf = tf.placeholder(dtype=tf.float32,shape=[None,1])
self.adv_tf = tf.placeholder(dtype=tf.float32,shape=[None,1])
# global steps to keep track of training
self.actor_step = tf.get_variable('actor_global_step', [], initializer=tf.constant_initializer(0), trainable=False)
self.critic_step = tf.get_variable('critic_global_step', [], initializer=tf.constant_initializer(0), trainable=False)
# build computation graphs
self.actor.build_graph(self.state_tf,self.actor_step)
self.old_actor.build_graph(self.state_tf,0)
self.critic.build_graph(self.state_tf,self.critic_step)
self.build_graph()
示例3: _setup_graph
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def _setup_graph(self):
"""
Sets up the tensorflow computation graph for training, prediction, and action selection
The variables returned will be set as class attributes (see __init__)
"""
tf_config = tf.ConfigProto()
tf_config.gpu_options.allow_growth = True
sess = tf.Session(config=tf_config)
### PROBLEM 1
### YOUR CODE HERE
state_ph, action_ph, next_state_ph = self._setup_placeholders()
next_state_pred = self._dynamics_func(state_ph, action_ph, False)
loss, optimizer = self._setup_training(state_ph, next_state_ph, next_state_pred)
### PROBLEM 2
### YOUR CODE HERE
best_action = self._setup_action_selection(state_ph)
sess.run(tf.global_variables_initializer())
return sess, state_ph, action_ph, next_state_ph, \
next_state_pred, loss, optimizer, best_action
示例4: train
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def train(env_id, num_timesteps, seed):
env = make_mujoco_env(env_id, seed)
with tf.Session(config=tf.ConfigProto()):
ob_dim = env.observation_space.shape[0]
ac_dim = env.action_space.shape[0]
with tf.variable_scope("vf"):
vf = NeuralNetValueFunction(ob_dim, ac_dim)
with tf.variable_scope("pi"):
policy = GaussianMlpPolicy(ob_dim, ac_dim)
learn(env, policy=policy, vf=vf,
gamma=0.99, lam=0.97, timesteps_per_batch=2500,
desired_kl=0.002,
num_timesteps=num_timesteps, animate=False)
env.close()
示例5: train
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def train(env_id, num_timesteps, seed, policy):
ncpu = multiprocessing.cpu_count()
if sys.platform == 'darwin': ncpu //= 2
config = tf.ConfigProto(allow_soft_placement=True,
intra_op_parallelism_threads=ncpu,
inter_op_parallelism_threads=ncpu)
config.gpu_options.allow_growth = True #pylint: disable=E1101
tf.Session(config=config).__enter__()
env = VecFrameStack(make_atari_env(env_id, 8, seed), 4)
policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy}[policy]
ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4,
lam=0.95, gamma=0.99, noptepochs=4, log_interval=1,
ent_coef=.01,
lr=lambda f : f * 2.5e-4,
cliprange=lambda f : f * 0.1,
total_timesteps=int(num_timesteps * 1.1))
示例6: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def __init__(self, train_df, word_count, batch_size, epochs):
tf.set_random_seed(4)
session_conf = tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=8)
backend.set_session(tf.Session(graph=tf.get_default_graph(), config=session_conf))
self.batch_size = batch_size
self.epochs = epochs
self.max_name_seq = 10
self.max_item_desc_seq = 75
self.max_text = word_count + 1
self.max_brand = np.max(train_df.brand_name.max()) + 1
self.max_condition = np.max(train_df.item_condition_id.max()) + 1
self.max_subcat0 = np.max(train_df.subcat_0.max()) + 1
self.max_subcat1 = np.max(train_df.subcat_1.max()) + 1
self.max_subcat2 = np.max(train_df.subcat_2.max()) + 1
示例7: predictor
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def predictor(q, gpu, pq):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
with sess.as_default():
model = create_model(gpu)
while True:
batch_fnames, x_batch = q.get()
if x_batch is None:
break
preds = model.predict_on_batch(x_batch)
for i, pred in enumerate(preds):
filename = batch_fnames[i]
pq.put((os.path.join(ensembling_dir, filename[:-4] + ".png"), pred))
示例8: predictor
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def predictor(q, gpu):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
with sess.as_default():
model = create_model(gpu)
while True:
batch_fnames, x_batch = q.get()
if x_batch is None:
break
preds = model.predict_on_batch(x_batch)
if args.pred_tta:
preds = undo_tta(preds, args.pred_tta)
for i, pred in enumerate(preds):
filename = batch_fnames[i]
prediction = pred[:, 1:-1, :]
array_to_img(prediction * 255).save(os.path.join(output_dir, filename.split('/')[-1][:-4] + ".png"))
示例9: chpt_to_dict_arrays_simple
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def chpt_to_dict_arrays_simple(file_name):
"""
Convert a checkpoint into into a dictionary of numpy arrays
for later use in TensorRT NMT sample.
"""
config = tf.ConfigProto(allow_soft_placement=True)
sess = tf.Session(config=config)
saver = tf.train.import_meta_graph(file_name)
dir_name = os.path.dirname(os.path.abspath(file_name))
saver.restore(sess, tf.train.latest_checkpoint(dir_name))
params = {}
print ('\nFound the following trainable variables:')
with sess.as_default():
variables = tf.trainable_variables()
for v in variables:
params[v.name] = v.eval(session=sess)
print ("{0} {1}".format(v.name, params[v.name].shape))
#use default value
params["forget_bias"] = 1.0
return params
示例10: test_update
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def test_update():
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
_config = tf.ConfigProto()
_config.gpu_options.allow_growth = True
_config.allow_soft_placement = True
start_time = time.time()
mdbt = MDBTTracker()
print('\tMDBT: model build time: {:.2f} seconds'.format(time.time() - start_time))
saver = tf.train.Saver()
mdbt.restore_model(mdbt.sess, saver)
# demo state history
mdbt.state['history'] = [['null', 'I\'m trying to find an expensive restaurant in the centre part of town.'],
[
'The Cambridge Chop House is an good expensive restaurant in the centre of town. Would you like me to book it for you?',
'Yes, a table for 1 at 16:15 on sunday. I need the reference number.']]
new_state = mdbt.update(None, 'hi, this is not good')
print(json.dumps(new_state, indent=4))
print('all time: {:.2f} seconds'.format(time.time() - start_time))
示例11: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def __init__(self, path: str = None, use_gpu=False):
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
from keras.backend import set_session
self.model = Sequential()
self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES, activation='relu',
input_dim=AOLReactionFeatureAnalyzer.NUM_FEATURES))
self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES - 2, activation='relu'))
self.model.add(Dense(1, activation='sigmoid'))
self.model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
if use_gpu:
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
示例12: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def __init__(self, use_gpu: bool = False):
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Embedding
from keras.layers import LSTM
from keras.backend import set_session
latent_dim = StructureModel.SEQUENCE_LENGTH * 8
model = Sequential()
model.add(
Embedding(StructureFeatureAnalyzer.NUM_FEATURES, StructureFeatureAnalyzer.NUM_FEATURES,
input_length=StructureModel.SEQUENCE_LENGTH))
model.add(LSTM(latent_dim, dropout=0.2, return_sequences=False))
model.add(Dense(StructureFeatureAnalyzer.NUM_FEATURES, activation='softmax'))
model.summary()
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
self.model = model
if use_gpu:
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
示例13: train
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def train(self):
# Construct model
model = Transformer()
print("Graph loaded")
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# Start training
sv = tf.train.Supervisor(logdir=pm.logdir, save_model_secs=0, init_op=init)
saver = sv.saver
with sv.managed_session(config=config) as sess:
for epoch in range(1, pm.num_epochs + 1):
if sv.should_stop():
break
for _ in tqdm(range(model.num_batch), total=model.num_batch, ncols=70, leave=False, unit='b'):
sess.run(model.optimizer)
gs = sess.run(model.global_step)
saver.save(sess, pm.logdir + '/model_epoch_{}_global_step_{}'.format(epoch, gs))
print("MSG : Done for training!")
示例14: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def __init__(self, checkpoint, pca_params, input_tensor_name, output_tensor_name):
"""Create a new Graph and a new Session for every VGGishExtractor object."""
super(VGGishExtractor, self).__init__()
self.graph = tf.Graph()
with self.graph.as_default():
vggish_slim.define_vggish_slim(training=False)
sess_config = tf.ConfigProto(allow_soft_placement=True)
sess_config.gpu_options.allow_growth = True
self.sess = tf.Session(graph=self.graph, config=sess_config)
vggish_slim.load_defined_vggish_slim_checkpoint(self.sess, checkpoint)
# use the self.sess to init others
self.input_tensor = self.graph.get_tensor_by_name(input_tensor_name)
self.output_tensor = self.graph.get_tensor_by_name(output_tensor_name)
# postprocessor
self.postprocess = vggish_postprocess.Postprocessor(pca_params)
示例15: make_app
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import ConfigProto [as 别名]
def make_app(model_dir):
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 1.0
config.allow_soft_placement = True
config.log_device_placement = True
sess = tf.Session(config=config)
tagger = Tagger(sess=sess, model_dir=model_dir, scope=TASK.scope, batch_size=200)
return tornado.web.Application([
(r"/", MainHandler),
(r"/%s" % TASK.scope, TaskHandler, {'tagger': tagger})
])