当前位置: 首页>>代码示例>>Python>>正文


Python common_attention.get_timing_signal_1d方法代码示例

本文整理汇总了Python中tensor2tensor.layers.common_attention.get_timing_signal_1d方法的典型用法代码示例。如果您正苦于以下问题:Python common_attention.get_timing_signal_1d方法的具体用法?Python common_attention.get_timing_signal_1d怎么用?Python common_attention.get_timing_signal_1d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensor2tensor.layers.common_attention的用法示例。


在下文中一共展示了common_attention.get_timing_signal_1d方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: sinusoidal_positional_encoding

# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import get_timing_signal_1d [as 别名]
def sinusoidal_positional_encoding(
    sequence_length, embed_size, name=None
):
    """
    Sinusoidal positional encoding.

    Args:
        - sequence_length: length of the sequence.
        - embed_size: size of the embedding.
        - name: optional name.
    Returns:
        A positional encoding of size `[1, sequence_length, embed_size]`.
    """
    with tf.variable_scope(
        name, default_name='sinusoidal_positional_encoding'
    ):
        return common_attention.get_timing_signal_1d(
            sequence_length, embed_size
        ) 
开发者ID:drugilsberg,项目名称:paccmann,代码行数:21,代码来源:layers.py

示例2: add_position_timing_signal

# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import get_timing_signal_1d [as 别名]
def add_position_timing_signal(x, step, hparams):
  """Add n-dimensional embedding as the position (horizontal) timing signal.

  Args:
    x: a tensor with shape [batch, length, depth]
    step: step
    hparams: model hyper parameters

  Returns:
    a Tensor with the same shape as x.

  """

  if not hparams.position_start_index:
    index = 0

  elif hparams.position_start_index == "random":
    # Shift all positions randomly
    # TODO(dehghani): What would be reasonable for max number of shift?
    index = tf.random_uniform(
        [], maxval=common_layers.shape_list(x)[1], dtype=tf.int32)

  elif hparams.position_start_index == "step":
    # Shift positions based on the step
    num_steps = (
        hparams.act_max_steps
        if hparams.recurrence_type == "act" else hparams.num_rec_steps)
    index = tf.cast(
        common_layers.shape_list(x)[1] * step / num_steps, dtype=tf.int32)

  # No need for the timing signal in the encoder/decoder input preparation
  assert hparams.pos is None

  length = common_layers.shape_list(x)[1]
  channels = common_layers.shape_list(x)[2]
  signal = common_attention.get_timing_signal_1d(
      length, channels, start_index=index)

  if hparams.add_or_concat_timing_signal == "add":
    x_with_timing = x + signal

  elif hparams.add_or_concat_timing_signal == "concat":
    batch_size = common_layers.shape_list(x)[0]
    signal_tiled = tf.tile(signal, [batch_size, 1, 1])
    x_with_timing = tf.concat((x, signal_tiled), axis=-1)

  return x_with_timing 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:49,代码来源:universal_transformer_util.py

示例3: add_position_timing_signal

# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import get_timing_signal_1d [as 别名]
def add_position_timing_signal(x, step, hparams):
  """Add n-dimensional embedding as the position (horizontal) timing signal.

  Args:
    x: a tensor with shape [batch, length, depth]
    step: step
    hparams: model hyper parameters

  Returns:
    a Tensor with the same shape as x.

  """

  if not hparams.position_start_index:
    index = 0

  elif hparams.position_start_index == "random":
    # Shift all positions randomly
    # TODO(dehghani): What would be reasonable for max number of shift?
    index = tf.random_uniform(
        [], maxval=common_layers.shape_list(x)[1], dtype=tf.int32)

  elif hparams.position_start_index == "step":
    # Shift positions based on the step
    if hparams.recurrence_type == "act":
      num_steps = hparams.act_max_steps
    else:
      num_steps = hparams.num_rec_steps
    index = tf.cast(
        common_layers.shape_list(x)[1] * step / num_steps, dtype=tf.int32)

  # No need for the timing signal in the encoder/decoder input preparation
  assert hparams.pos is None

  length = common_layers.shape_list(x)[1]
  channels = common_layers.shape_list(x)[2]
  signal = common_attention.get_timing_signal_1d(
      length, channels, start_index=index)

  if hparams.add_or_concat_timing_signal == "add":
    x_with_timing = x + common_layers.cast_like(signal, x)

  elif hparams.add_or_concat_timing_signal == "concat":
    batch_size = common_layers.shape_list(x)[0]
    signal_tiled = tf.tile(signal, [batch_size, 1, 1])
    x_with_timing = tf.concat((x, signal_tiled), axis=-1)

  return x_with_timing 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:50,代码来源:universal_transformer_util.py


注:本文中的tensor2tensor.layers.common_attention.get_timing_signal_1d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。