当前位置: 首页>>代码示例>>Python>>正文


Python common_attention.get_layer_timing_signal_sinusoid_1d方法代码示例

本文整理汇总了Python中tensor2tensor.layers.common_attention.get_layer_timing_signal_sinusoid_1d方法的典型用法代码示例。如果您正苦于以下问题:Python common_attention.get_layer_timing_signal_sinusoid_1d方法的具体用法?Python common_attention.get_layer_timing_signal_sinusoid_1d怎么用?Python common_attention.get_layer_timing_signal_sinusoid_1d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensor2tensor.layers.common_attention的用法示例。


在下文中一共展示了common_attention.get_layer_timing_signal_sinusoid_1d方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: add_step_timing_signal

# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import get_layer_timing_signal_sinusoid_1d [as 别名]
def add_step_timing_signal(x, step, hparams):
  """Add n-dimensional embedding as the step (vertical) timing signal.

  Args:
    x: a tensor with shape [batch, length, depth]
    step: step
    hparams: model hyper parameters

  Returns:
    a Tensor with the same shape as x.

  """
  num_steps = (
      hparams.act_max_steps
      if hparams.recurrence_type == "act" else hparams.num_rec_steps)
  channels = common_layers.shape_list(x)[-1]

  if hparams.step_timing_signal_type == "learned":
    signal = common_attention.get_layer_timing_signal_learned_1d(
        channels, step, num_steps)

  elif hparams.step_timing_signal_type == "sinusoid":
    signal = common_attention.get_layer_timing_signal_sinusoid_1d(
        channels, step, num_steps)

  if hparams.add_or_concat_timing_signal == "add":
    x_with_timing = x + signal

  elif hparams.add_or_concat_timing_signal == "concat":
    batch_size = common_layers.shape_list(x)[0]
    length = common_layers.shape_list(x)[1]
    signal_tiled = tf.tile(signal, [batch_size, length, 1])
    x_with_timing = tf.concat((x, signal_tiled), axis=-1)

  return x_with_timing 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:37,代码来源:universal_transformer_util.py

示例2: add_step_timing_signal

# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import get_layer_timing_signal_sinusoid_1d [as 别名]
def add_step_timing_signal(x, step, hparams):
  """Add n-dimensional embedding as the step (vertical) timing signal.

  Args:
    x: a tensor with shape [batch, length, depth]
    step: step
    hparams: model hyper parameters

  Returns:
    a Tensor with the same shape as x.

  """
  if hparams.recurrence_type == "act":
    num_steps = hparams.act_max_steps
  else:
    num_steps = hparams.num_rec_steps
  channels = common_layers.shape_list(x)[-1]

  if hparams.step_timing_signal_type == "learned":
    signal = common_attention.get_layer_timing_signal_learned_1d(
        channels, step, num_steps)

  elif hparams.step_timing_signal_type == "sinusoid":
    signal = common_attention.get_layer_timing_signal_sinusoid_1d(
        channels, step, num_steps)

  if hparams.add_or_concat_timing_signal == "add":
    x_with_timing = x + common_layers.cast_like(signal, x)

  elif hparams.add_or_concat_timing_signal == "concat":
    batch_size = common_layers.shape_list(x)[0]
    length = common_layers.shape_list(x)[1]
    signal_tiled = tf.tile(signal, [batch_size, length, 1])
    x_with_timing = tf.concat((x, signal_tiled), axis=-1)

  return x_with_timing 
开发者ID:tensorflow,项目名称:tensor2tensor,代码行数:38,代码来源:universal_transformer_util.py


注:本文中的tensor2tensor.layers.common_attention.get_layer_timing_signal_sinusoid_1d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。