本文整理汇总了Python中tensor2tensor.layers.common_attention.attention_bias方法的典型用法代码示例。如果您正苦于以下问题:Python common_attention.attention_bias方法的具体用法?Python common_attention.attention_bias怎么用?Python common_attention.attention_bias使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensor2tensor.layers.common_attention
的用法示例。
在下文中一共展示了common_attention.attention_bias方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: attention_lm_decoder
# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import attention_bias [as 别名]
def attention_lm_decoder(decoder_input,
decoder_self_attention_bias,
hparams,
name="decoder"):
"""A stack of attention_lm layers.
Args:
decoder_input: a Tensor
decoder_self_attention_bias: bias Tensor for self-attention
(see common_attention.attention_bias())
hparams: hyperparameters for model
name: a string
Returns:
y: a Tensors
"""
x = decoder_input
with tf.variable_scope(name):
for layer in range(hparams.num_hidden_layers):
with tf.variable_scope("layer_%d" % layer):
with tf.variable_scope("self_attention"):
y = common_attention.multihead_attention(
common_layers.layer_preprocess(
x, hparams), None, decoder_self_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size, hparams.num_heads, hparams.attention_dropout)
x = common_layers.layer_postprocess(x, y, hparams)
with tf.variable_scope("ffn"):
y = common_layers.conv_hidden_relu(
common_layers.layer_preprocess(x, hparams),
hparams.filter_size,
hparams.hidden_size,
dropout=hparams.relu_dropout)
x = common_layers.layer_postprocess(x, y, hparams)
return common_layers.layer_preprocess(x, hparams)
示例2: transformer_revnet_encoder
# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import attention_bias [as 别名]
def transformer_revnet_encoder(encoder_input,
encoder_self_attention_bias,
hparams,
name="encoder"):
"""A stack of transformer layers.
Args:
encoder_input: a Tensor
encoder_self_attention_bias: bias Tensor for self-attention
(see common_attention.attention_bias())
hparams: hyperparameters for model
name: a string
Returns:
y: a Tensors
"""
def f(x, side_input):
"""f(x) for reversible layer, self-attention layer."""
encoder_self_attention_bias = side_input[0]
old_hid_size = hparams.hidden_size
hparams.hidden_size = old_hid_size // 2
with tf.variable_scope("self_attention"):
y = common_attention.multihead_attention(
common_layers.layer_preprocess(
x, hparams), None, encoder_self_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size, hparams.num_heads, hparams.attention_dropout)
y = common_layers.layer_postprocess(x, y, hparams)
hparams.hidden_size = old_hid_size
return y
def g(x):
"""g(x) for reversible layer, feed-forward layer."""
old_hid_size = hparams.hidden_size
hparams.hidden_size = old_hid_size // 2
with tf.variable_scope("ffn"):
y = transformer.transformer_ffn_layer(
common_layers.layer_preprocess(x, hparams), hparams)
y = common_layers.layer_postprocess(x, y, hparams)
hparams.hidden_size = old_hid_size
return y
x1, x2 = tf.split(encoder_input, 2, axis=-1)
with tf.variable_scope(name):
y1, y2 = rev_block.rev_block(
x1,
x2,
f,
g,
num_layers=hparams.num_hidden_layers,
f_side_input=[encoder_self_attention_bias],
is_training=hparams.mode == tf.estimator.ModeKeys.TRAIN)
y = tf.concat([y1, y2], axis=-1)
return common_layers.layer_preprocess(y, hparams)
示例3: universal_transformer_decoder
# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import attention_bias [as 别名]
def universal_transformer_decoder(decoder_input,
encoder_output,
decoder_self_attention_bias,
encoder_decoder_attention_bias,
hparams,
name="decoder",
nonpadding=None,
save_weights_to=None,
make_image_summary=True):
"""Universal Transformer decoder function.
Prepares all the arguments and the inputs and passes it to a
core_universal_transformer_layer to decoder.
Args:
decoder_input: a Tensor
encoder_output: a Tensor
decoder_self_attention_bias: bias Tensor for self-attention
(see common_attention.attention_bias())
encoder_decoder_attention_bias: bias Tensor for encoder-decoder attention
(see common_attention.attention_bias())
hparams: hyperparameters for model
name: a string
nonpadding: optional Tensor with shape [batch_size, encoder_length]
indicating what positions are not padding. This is used
to mask out padding in convoltutional layers. We generally only
need this mask for "packed" datasets, because for ordinary datasets,
no padding is ever followed by nonpadding.
save_weights_to: an optional dictionary to capture attention weights
for vizualization; the weights tensor will be appended there under
a string key created from the variable scope (including name).
make_image_summary: Whether to make an attention image summary.
Returns:
y: the output Tensors
extra_output: which can be used to pass extra information to the body
"""
x = decoder_input
attention_dropout_broadcast_dims = (
common_layers.comma_separated_string_to_integer_list(
getattr(hparams, "attention_dropout_broadcast_dims", "")))
with tf.variable_scope(name):
ffn_unit = functools.partial(
transformer_decoder_ffn_unit,
hparams=hparams,
nonpadding_mask=nonpadding)
attention_unit = functools.partial(
transformer_decoder_attention_unit,
hparams=hparams,
encoder_output=encoder_output,
decoder_self_attention_bias=decoder_self_attention_bias,
encoder_decoder_attention_bias=encoder_decoder_attention_bias,
attention_dropout_broadcast_dims=attention_dropout_broadcast_dims,
save_weights_to=save_weights_to,
make_image_summary=make_image_summary)
x, extra_output = universal_transformer_layer(
x, hparams, ffn_unit, attention_unit)
return common_layers.layer_preprocess(x, hparams), extra_output
示例4: attention
# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import attention_bias [as 别名]
def attention(targets_shifted, inputs_encoded, norm_fn, hparams, bias=None):
"""Complete attention layer with preprocessing."""
separabilities = [hparams.separability, hparams.separability]
if hparams.separability < 0:
separabilities = [hparams.separability - 1, hparams.separability]
targets_timed = common_layers.subseparable_conv_block(
common_layers.add_timing_signal(targets_shifted),
hparams.hidden_size, [((1, 1), (5, 1)), ((4, 1), (5, 1))],
normalizer_fn=norm_fn,
padding="LEFT",
separabilities=separabilities,
name="targets_time")
if hparams.attention_type == "transformer":
targets_timed = tf.squeeze(targets_timed, 2)
target_shape = tf.shape(targets_timed)
targets_segment = tf.zeros([target_shape[0], target_shape[1]])
target_attention_bias = common_attention.attention_bias(
targets_segment, targets_segment, lower_triangular=True)
inputs_attention_bias = tf.zeros([
tf.shape(inputs_encoded)[0], hparams.num_heads,
tf.shape(targets_segment)[1],
tf.shape(inputs_encoded)[1]
])
qv = common_attention.multihead_attention(
targets_timed,
None,
target_attention_bias,
hparams.hidden_size,
hparams.hidden_size,
hparams.hidden_size,
hparams.num_heads,
hparams.attention_dropout,
name="self_attention")
qv = common_attention.multihead_attention(
qv,
inputs_encoded,
inputs_attention_bias,
hparams.hidden_size,
hparams.hidden_size,
hparams.hidden_size,
hparams.num_heads,
hparams.attention_dropout,
name="encdec_attention")
return tf.expand_dims(qv, 2)
elif hparams.attention_type == "simple":
targets_with_attention = common_layers.simple_attention(
targets_timed, inputs_encoded, bias=bias)
return norm_fn(targets_shifted + targets_with_attention, name="attn_norm")
示例5: transformer_revnet_encoder
# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import attention_bias [as 别名]
def transformer_revnet_encoder(encoder_input,
encoder_self_attention_bias,
hparams,
name="encoder"):
"""A stack of transformer layers.
Args:
encoder_input: a Tensor
encoder_self_attention_bias: bias Tensor for self-attention
(see common_attention.attention_bias())
hparams: hyperparameters for model
name: a string
Returns:
y: a Tensors
"""
def f(x, side_input):
"""f(x) for reversible layer, self-attention layer."""
encoder_self_attention_bias = side_input[0]
old_hid_size = hparams.hidden_size
hparams.hidden_size = old_hid_size // 2
with tf.variable_scope("self_attention"):
y = common_attention.multihead_attention(
common_layers.layer_preprocess(
x, hparams), None, encoder_self_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size, hparams.num_heads, hparams.attention_dropout)
y = common_layers.layer_postprocess(x, y, hparams)
hparams.hidden_size = old_hid_size
return y
def g(x):
"""g(x) for reversible layer, feed-forward layer."""
old_hid_size = hparams.hidden_size
hparams.hidden_size = old_hid_size // 2
with tf.variable_scope("ffn"):
y = transformer.transformer_ffn_layer(
common_layers.layer_preprocess(x, hparams), hparams)
y = common_layers.layer_postprocess(x, y, hparams)
hparams.hidden_size = old_hid_size
return y
x1, x2 = tf.split(encoder_input, 2, axis=-1)
with tf.variable_scope(name):
y1, y2 = contrib.layers().rev_block(
x1,
x2,
f,
g,
num_layers=hparams.num_hidden_layers,
f_side_input=[encoder_self_attention_bias],
is_training=hparams.mode == tf.estimator.ModeKeys.TRAIN)
y = tf.concat([y1, y2], axis=-1)
return common_layers.layer_preprocess(y, hparams)
示例6: transformer_revnet_encoder
# 需要导入模块: from tensor2tensor.layers import common_attention [as 别名]
# 或者: from tensor2tensor.layers.common_attention import attention_bias [as 别名]
def transformer_revnet_encoder(encoder_input,
encoder_self_attention_bias,
hparams,
name="encoder"):
"""A stack of transformer layers.
Args:
encoder_input: a Tensor
encoder_self_attention_bias: bias Tensor for self-attention
(see common_attention.attention_bias())
hparams: hyperparameters for model
name: a string
Returns:
y: a Tensors
"""
def f(x, side_input):
"""f(x) for reversible layer, self-attention layer."""
encoder_self_attention_bias = side_input[0]
old_hid_size = hparams.hidden_size
hparams.hidden_size = old_hid_size // 2
with tf.variable_scope("self_attention"):
y = common_attention.multihead_attention(
common_layers.layer_preprocess(
x, hparams), None, encoder_self_attention_bias,
hparams.attention_key_channels or hparams.hidden_size,
hparams.attention_value_channels or hparams.hidden_size,
hparams.hidden_size, hparams.num_heads, hparams.attention_dropout)
y = common_layers.layer_postprocess(x, y, hparams)
hparams.hidden_size = old_hid_size
return y
def g(x):
"""g(x) for reversible layer, feed-forward layer."""
old_hid_size = hparams.hidden_size
hparams.hidden_size = old_hid_size // 2
with tf.variable_scope("ffn"):
y = transformer.transformer_ffn_layer(
common_layers.layer_preprocess(x, hparams), hparams)
y = common_layers.layer_postprocess(x, y, hparams)
hparams.hidden_size = old_hid_size
return y
x1, x2 = tf.split(encoder_input, 2, axis=-1)
with tf.variable_scope(name):
y1, y2 = tf.contrib.layers.rev_block(
x1,
x2,
f,
g,
num_layers=hparams.num_hidden_layers,
f_side_input=[encoder_self_attention_bias],
is_training=hparams.mode == tf.estimator.ModeKeys.TRAIN)
y = tf.concat([y1, y2], axis=-1)
return common_layers.layer_preprocess(y, hparams)