本文整理汇总了Python中tables.Int32Atom方法的典型用法代码示例。如果您正苦于以下问题:Python tables.Int32Atom方法的具体用法?Python tables.Int32Atom怎么用?Python tables.Int32Atom使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tables
的用法示例。
在下文中一共展示了tables.Int32Atom方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fetch_svhn_extra
# 需要导入模块: import tables [as 别名]
# 或者: from tables import Int32Atom [as 别名]
def fetch_svhn_extra(source_paths, target_path):
extra_path = source_paths[0]
print('Converting {} to HDF5 (compressed)...'.format(extra_path))
f_out = tables.open_file(target_path, mode='w')
g_out = f_out.create_group(f_out.root, 'svhn', 'SVHN data')
filters = tables.Filters(complevel=9, complib='blosc')
X_u8_arr = f_out.create_earray(
g_out, 'extra_X_u8', tables.UInt8Atom(), (0, 3, 32, 32),
filters=filters)
y_arr = f_out.create_earray(
g_out, 'extra_y', tables.Int32Atom(), (0,), filters=filters)
# Load in the extra data Matlab file
_insert_svhn_matlab_to_h5(X_u8_arr, y_arr, extra_path)
f_out.close()
return target_path
示例2: init_hdf5
# 需要导入模块: import tables [as 别名]
# 或者: from tables import Int32Atom [as 别名]
def init_hdf5(self, path, shapes,
title="Pytables Dataset",
y_dtype='float'):
"""
Initializes the hdf5 file into which the data will be stored. This must
be called before calling fill_hdf5.
Parameters
----------
path : string
The name of the hdf5 file.
shapes : tuple
The shapes of X and y.
title : string, optional
Name of the dataset. e.g. For SVHN, set this to "SVHN Dataset".
"Pytables Dataset" is used as title, by default.
y_dtype : string, optional
Either 'float' or 'int'. Decides the type of pytables atom
used to store the y data. By default 'float' type is used.
"""
assert y_dtype in ['float', 'int'], (
"y_dtype can be 'float' or 'int' only"
)
x_shape, y_shape = shapes
# make pytables
ensure_tables()
h5file = tables.openFile(path, mode="w", title=title)
gcolumns = h5file.createGroup(h5file.root, "Data", "Data")
atom = (tables.Float32Atom() if config.floatX == 'float32'
else tables.Float64Atom())
h5file.createCArray(gcolumns, 'X', atom=atom, shape=x_shape,
title="Data values", filters=self.filters)
if y_dtype != 'float':
# For 1D ndarray of int labels, override the atom to integer
atom = (tables.Int32Atom() if config.floatX == 'float32'
else tables.Int64Atom())
h5file.createCArray(gcolumns, 'y', atom=atom, shape=y_shape,
title="Data targets", filters=self.filters)
return h5file, gcolumns
示例3: resize
# 需要导入模块: import tables [as 别名]
# 或者: from tables import Int32Atom [as 别名]
def resize(self, h5file, start, stop):
"""
Resizes the X and y tables. This must be called before calling
fill_hdf5.
Parameters
----------
h5file : hdf5 file handle
Handle to an hdf5 object.
start : int
The start index to write data.
stop : int
The index of the record following the last record to be written.
"""
ensure_tables()
# TODO is there any smarter and more efficient way to this?
data = h5file.getNode('/', "Data")
try:
gcolumns = h5file.createGroup('/', "Data_", "Data")
except tables.exceptions.NodeError:
h5file.removeNode('/', "Data_", 1)
gcolumns = h5file.createGroup('/', "Data_", "Data")
start = 0 if start is None else start
stop = gcolumns.X.nrows if stop is None else stop
atom = (tables.Float32Atom() if config.floatX == 'float32'
else tables.Float64Atom())
x = h5file.createCArray(gcolumns,
'X',
atom=atom,
shape=((stop - start, data.X.shape[1])),
title="Data values",
filters=self.filters)
if np.issubdtype(data.y, int):
# For 1D ndarray of int labels, override the atom to integer
atom = (tables.Int32Atom() if config.floatX == 'float32'
else tables.Int64Atom())
y = h5file.createCArray(gcolumns,
'y',
atom=atom,
shape=((stop - start, data.y.shape[1])),
title="Data targets",
filters=self.filters)
x[:] = data.X[start:stop]
y[:] = data.y[start:stop]
h5file.removeNode('/', "Data", 1)
h5file.renameNode('/', "Data", "Data_")
h5file.flush()
return h5file, gcolumns
示例4: _hdf5
# 需要导入模块: import tables [as 别名]
# 或者: from tables import Int32Atom [as 别名]
def _hdf5(self, alphabet_path, hdf5_path, ninput=26, ncontext=9):
skipped = []
str_to_label = {}
alphabet_size = 0
with codecs.open(alphabet_path, 'r', 'utf-8') as fin:
for line in fin:
if line[0:2] == '\\#':
line = '#\n'
elif line[0] == '#':
continue
str_to_label[line[:-1]] = alphabet_size
alphabet_size += 1
def process_sample(sample):
if len(sample.transcript) == 0:
skipped.append(sample.original_name)
return None
sample.write()
try:
samplerate, audio = wav.read(sample.file.filename)
transcript = np.asarray([str_to_label[c] for c in sample.transcript])
except:
skipped.append(sample.original_name)
return None
features = mfcc(audio, samplerate=samplerate, numcep=ninput)[::2]
empty_context = np.zeros((ncontext, ninput), dtype=features.dtype)
features = np.concatenate((empty_context, features, empty_context))
if (2*ncontext + len(features)) < len(transcript):
skipped.append(sample.original_name)
return None
return features, len(features), transcript, len(transcript)
out_data = self._map('Computing MFCC features...', self.samples, process_sample)
out_data = [s for s in out_data if s is not None]
if len(skipped) > 0:
log('WARNING - Skipped %d samples that had no transcription, had been too short for their transcription or had been missed:' % len(skipped))
for s in skipped:
log(' - Sample origin: "%s".' % s)
if len(out_data) <= 0:
log('No samples written to feature DB "%s".' % hdf5_path)
return
# list of tuples -> tuple of lists
features, features_len, transcript, transcript_len = zip(*out_data)
log('Writing feature DB...')
with tables.open_file(hdf5_path, 'w') as file:
features_dset = file.create_vlarray(file.root, 'features', tables.Float32Atom(), filters=tables.Filters(complevel=1))
# VLArray atoms need to be 1D, so flatten feature array
for f in features:
features_dset.append(np.reshape(f, -1))
features_len_dset = file.create_array(file.root, 'features_len', features_len)
transcript_dset = file.create_vlarray(file.root, 'transcript', tables.Int32Atom(), filters=tables.Filters(complevel=1))
for t in transcript:
transcript_dset.append(t)
transcript_len_dset = file.create_array(file.root, 'transcript_len', transcript_len)
log('Wrote features of %d samples to feature DB "%s".' % (len(features), hdf5_path))