本文整理汇总了Python中syntaxnet.ops.gen_parser_ops.lexicon_builder方法的典型用法代码示例。如果您正苦于以下问题:Python gen_parser_ops.lexicon_builder方法的具体用法?Python gen_parser_ops.lexicon_builder怎么用?Python gen_parser_ops.lexicon_builder使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类syntaxnet.ops.gen_parser_ops
的用法示例。
在下文中一共展示了gen_parser_ops.lexicon_builder方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setUp
# 需要导入模块: from syntaxnet.ops import gen_parser_ops [as 别名]
# 或者: from syntaxnet.ops.gen_parser_ops import lexicon_builder [as 别名]
def setUp(self):
# Creates a task context with the correct testing paths.
initial_task_context = os.path.join(FLAGS.test_srcdir,
'syntaxnet/'
'testdata/context.pbtxt')
self._task_context = os.path.join(FLAGS.test_tmpdir, 'context.pbtxt')
with open(initial_task_context, 'r') as fin:
with open(self._task_context, 'w') as fout:
fout.write(fin.read().replace('SRCDIR', FLAGS.test_srcdir)
.replace('OUTPATH', FLAGS.test_tmpdir))
# Creates necessary term maps.
with self.test_session() as sess:
gen_parser_ops.lexicon_builder(task_context=self._task_context,
corpus_name='training-corpus').run()
self._num_features, self._num_feature_ids, _, self._num_actions = (
sess.run(gen_parser_ops.feature_size(task_context=self._task_context,
arg_prefix='brain_parser')))
示例2: setUp
# 需要导入模块: from syntaxnet.ops import gen_parser_ops [as 别名]
# 或者: from syntaxnet.ops.gen_parser_ops import lexicon_builder [as 别名]
def setUp(self):
# Creates a task context with the correct testing paths.
initial_task_context = os.path.join(
FLAGS.test_srcdir,
'syntaxnet/'
'testdata/context.pbtxt')
self._task_context = os.path.join(FLAGS.test_tmpdir, 'context.pbtxt')
with open(initial_task_context, 'r') as fin:
with open(self._task_context, 'w') as fout:
fout.write(fin.read().replace('SRCDIR', FLAGS.test_srcdir)
.replace('OUTPATH', FLAGS.test_tmpdir))
# Creates necessary term maps.
with self.test_session() as sess:
gen_parser_ops.lexicon_builder(task_context=self._task_context,
corpus_name='training-corpus').run()
self._num_features, self._num_feature_ids, _, self._num_actions = (
sess.run(gen_parser_ops.feature_size(task_context=self._task_context,
arg_prefix='brain_parser')))
示例3: setUp
# 需要导入模块: from syntaxnet.ops import gen_parser_ops [as 别名]
# 或者: from syntaxnet.ops.gen_parser_ops import lexicon_builder [as 别名]
def setUp(self):
# Creates a task context with the correct testing paths.
initial_task_context = os.path.join(test_flags.source_root(),
'syntaxnet/'
'testdata/context.pbtxt')
self._task_context = os.path.join(test_flags.temp_dir(), 'context.pbtxt')
with open(initial_task_context, 'r') as fin:
with open(self._task_context, 'w') as fout:
fout.write(fin.read().replace('SRCDIR', test_flags.source_root())
.replace('OUTPATH', test_flags.temp_dir()))
# Creates necessary term maps.
with self.test_session() as sess:
gen_parser_ops.lexicon_builder(task_context=self._task_context,
corpus_name='training-corpus').run()
self._num_features, self._num_feature_ids, _, self._num_actions = (
sess.run(gen_parser_ops.feature_size(task_context=self._task_context,
arg_prefix='brain_parser')))
示例4: build_lexicon
# 需要导入模块: from syntaxnet.ops import gen_parser_ops [as 别名]
# 或者: from syntaxnet.ops.gen_parser_ops import lexicon_builder [as 别名]
def build_lexicon(output_path,
training_corpus_path,
tf_master='',
training_corpus_format='conll-sentence',
morph_to_pos=False,
**kwargs):
"""Constructs a SyntaxNet lexicon at the given path.
Args:
output_path: Location to construct the lexicon.
training_corpus_path: Path to CONLL formatted training data.
tf_master: TensorFlow master executor (string, defaults to '' to use the
local instance).
training_corpus_format: Format of the training corpus (defaults to CONLL;
search for REGISTER_SYNTAXNET_DOCUMENT_FORMAT for other formats).
morph_to_pos: Whether to serialize morph attributes to the tag field,
combined with category and fine POS tag.
**kwargs: Forwarded to the LexiconBuilder op.
"""
context = create_lexicon_context(output_path)
if morph_to_pos:
context.parameter.add(name='join_category_to_pos', value='true')
context.parameter.add(name='add_pos_as_attribute', value='true')
context.parameter.add(name='serialize_morph_to_pos', value='true')
# Add the training data to the context.
resource = context.input.add()
resource.name = 'corpus'
resource.record_format.extend([training_corpus_format])
part = resource.part.add()
part.file_pattern = training_corpus_path
# Run the lexicon builder op.
with tf.Session(tf_master) as sess:
sess.run(
gen_parser_ops.lexicon_builder(
task_context_str=str(context), corpus_name='corpus', **kwargs))
示例5: BuildLexicon
# 需要导入模块: from syntaxnet.ops import gen_parser_ops [as 别名]
# 或者: from syntaxnet.ops.gen_parser_ops import lexicon_builder [as 别名]
def BuildLexicon(self):
with self.test_session():
gen_parser_ops.lexicon_builder(
task_context=self.context_file,
lexicon_max_char_ngram_length=2,
lexicon_char_ngram_mark_boundaries=True).run()