当前位置: 首页>>代码示例>>Python>>正文


Python gen_parser_ops.feature_size方法代码示例

本文整理汇总了Python中syntaxnet.ops.gen_parser_ops.feature_size方法的典型用法代码示例。如果您正苦于以下问题:Python gen_parser_ops.feature_size方法的具体用法?Python gen_parser_ops.feature_size怎么用?Python gen_parser_ops.feature_size使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在syntaxnet.ops.gen_parser_ops的用法示例。


在下文中一共展示了gen_parser_ops.feature_size方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setUp

# 需要导入模块: from syntaxnet.ops import gen_parser_ops [as 别名]
# 或者: from syntaxnet.ops.gen_parser_ops import feature_size [as 别名]
def setUp(self):
    # Creates a task context with the correct testing paths.
    initial_task_context = os.path.join(FLAGS.test_srcdir,
                                        'syntaxnet/'
                                        'testdata/context.pbtxt')
    self._task_context = os.path.join(FLAGS.test_tmpdir, 'context.pbtxt')
    with open(initial_task_context, 'r') as fin:
      with open(self._task_context, 'w') as fout:
        fout.write(fin.read().replace('SRCDIR', FLAGS.test_srcdir)
                   .replace('OUTPATH', FLAGS.test_tmpdir))

    # Creates necessary term maps.
    with self.test_session() as sess:
      gen_parser_ops.lexicon_builder(task_context=self._task_context,
                                     corpus_name='training-corpus').run()
      self._num_features, self._num_feature_ids, _, self._num_actions = (
          sess.run(gen_parser_ops.feature_size(task_context=self._task_context,
                                               arg_prefix='brain_parser'))) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:20,代码来源:beam_reader_ops_test.py

示例2: setUp

# 需要导入模块: from syntaxnet.ops import gen_parser_ops [as 别名]
# 或者: from syntaxnet.ops.gen_parser_ops import feature_size [as 别名]
def setUp(self):
    # Creates a task context with the correct testing paths.
    initial_task_context = os.path.join(
        FLAGS.test_srcdir,
        'syntaxnet/'
        'testdata/context.pbtxt')
    self._task_context = os.path.join(FLAGS.test_tmpdir, 'context.pbtxt')
    with open(initial_task_context, 'r') as fin:
      with open(self._task_context, 'w') as fout:
        fout.write(fin.read().replace('SRCDIR', FLAGS.test_srcdir)
                   .replace('OUTPATH', FLAGS.test_tmpdir))

    # Creates necessary term maps.
    with self.test_session() as sess:
      gen_parser_ops.lexicon_builder(task_context=self._task_context,
                                     corpus_name='training-corpus').run()
      self._num_features, self._num_feature_ids, _, self._num_actions = (
          sess.run(gen_parser_ops.feature_size(task_context=self._task_context,
                                               arg_prefix='brain_parser'))) 
开发者ID:coderSkyChen,项目名称:Action_Recognition_Zoo,代码行数:21,代码来源:beam_reader_ops_test.py

示例3: setUp

# 需要导入模块: from syntaxnet.ops import gen_parser_ops [as 别名]
# 或者: from syntaxnet.ops.gen_parser_ops import feature_size [as 别名]
def setUp(self):
    # Creates a task context with the correct testing paths.
    initial_task_context = os.path.join(test_flags.source_root(),
                                        'syntaxnet/'
                                        'testdata/context.pbtxt')
    self._task_context = os.path.join(test_flags.temp_dir(), 'context.pbtxt')
    with open(initial_task_context, 'r') as fin:
      with open(self._task_context, 'w') as fout:
        fout.write(fin.read().replace('SRCDIR', test_flags.source_root())
                   .replace('OUTPATH', test_flags.temp_dir()))

    # Creates necessary term maps.
    with self.test_session() as sess:
      gen_parser_ops.lexicon_builder(task_context=self._task_context,
                                     corpus_name='training-corpus').run()
      self._num_features, self._num_feature_ids, _, self._num_actions = (
          sess.run(gen_parser_ops.feature_size(task_context=self._task_context,
                                               arg_prefix='brain_parser'))) 
开发者ID:generalized-iou,项目名称:g-tensorflow-models,代码行数:20,代码来源:beam_reader_ops_test.py

示例4: testParsingReaderOpWhileLoop

# 需要导入模块: from syntaxnet.ops import gen_parser_ops [as 别名]
# 或者: from syntaxnet.ops.gen_parser_ops import feature_size [as 别名]
def testParsingReaderOpWhileLoop(self):
    feature_size = 3
    batch_size = 5

    def ParserEndpoints():
      return gen_parser_ops.gold_parse_reader(self._task_context,
                                              feature_size,
                                              batch_size,
                                              corpus_name='training-corpus')

    with self.test_session() as sess:
      # The 'condition' and 'body' functions expect as many arguments as there
      # are loop variables. 'condition' depends on the 'epoch' loop variable
      # only, so we disregard the remaining unused function arguments. 'body'
      # returns a list of updated loop variables.
      def Condition(epoch, *unused_args):
        return tf.less(epoch, 2)

      def Body(epoch, num_actions, *feature_args):
        # By adding one of the outputs of the reader op ('epoch') as a control
        # dependency to the reader op we force the repeated evaluation of the
        # reader op.
        with epoch.graph.control_dependencies([epoch]):
          features, epoch, gold_actions = ParserEndpoints()
        num_actions = tf.maximum(num_actions,
                                 tf.reduce_max(gold_actions, [0], False) + 1)
        feature_ids = []
        for i in range(len(feature_args)):
          feature_ids.append(features[i])
        return [epoch, num_actions] + feature_ids

      epoch = ParserEndpoints()[-2]
      num_actions = tf.constant(0)
      loop_vars = [epoch, num_actions]

      res = sess.run(
          tf.while_loop(Condition, Body, loop_vars,
                        shape_invariants=[tf.TensorShape(None)] * 2,
                        parallel_iterations=1))
      logging.info('Result: %s', res)
      self.assertEqual(res[0], 2) 
开发者ID:rky0930,项目名称:yolo_v2,代码行数:43,代码来源:reader_ops_test.py


注:本文中的syntaxnet.ops.gen_parser_ops.feature_size方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。