本文整理汇总了Python中sympy.sign方法的典型用法代码示例。如果您正苦于以下问题:Python sympy.sign方法的具体用法?Python sympy.sign怎么用?Python sympy.sign使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy
的用法示例。
在下文中一共展示了sympy.sign方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_sign
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import sign [as 别名]
def test_sign():
x = Symbol("x")
e1 = sympy.sign(sympy.Symbol("x"))
e2 = sign(x)
assert sympify(e1) == e2
assert e2._sympy_() == e1
示例2: cphase_symbols_to_sqrt_iswap
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import sign [as 别名]
def cphase_symbols_to_sqrt_iswap(a, b, turns):
"""Version of cphase_to_sqrt_iswap that works with symbols.
Note that the formulae contained below will need to be flattened
into a sweep before serializing.
"""
theta = sympy.Mod(turns, 2.0) * sympy.pi
# -1 if theta > pi. Adds a hacky fudge factor so theta=pi is not 0
sign = sympy.sign(sympy.pi - theta + 1e-9)
# For sign = 1: theta. For sign = -1, 2pi-theta
theta_prime = (sympy.pi - sign * sympy.pi) + sign * theta
phi = sympy.asin(np.sqrt(2) * sympy.sin(theta_prime / 4))
xi = sympy.atan(sympy.tan(phi) / np.sqrt(2))
yield ops.rz(sign * 0.5 * theta_prime).on(a)
yield ops.rz(sign * 0.5 * theta_prime).on(b)
yield ops.rx(xi).on(a)
yield ops.X(b)**(-sign * 0.5)
yield SQRT_ISWAP_INV(a, b)
yield ops.rx(-2 * phi).on(a)
yield SQRT_ISWAP(a, b)
yield ops.rx(xi).on(a)
yield ops.X(b)**(sign * 0.5)
示例3: grad
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import sign [as 别名]
def grad(f, basis, for_numerical=True):
"""
Compute the symbolic gradient of a vector-valued function with respect to a
basis.
Parameters
----------
f : 1D array_like of sympy Expressions
The vector-valued function to compute the gradient of.
basis : 1D array_like of sympy symbols
The basis symbols to compute the gradient with respect to.
for_numerical : bool, optional
A placeholder for the option of numerically computing the gradient.
Returns
-------
grad : 2D array_like of sympy Expressions
The symbolic gradient.
"""
if hasattr(f, '__len__'): # as of version 1.1.1, Array isn't supported
f = sp.Matrix(f)
return f.__class__([
[
sp.diff(f[x], basis[y])
if not for_numerical or not f[x].has(sp.sign(basis[y])) else 0
for y in range(len(basis))
] for x in range(len(f))
])
示例4: freesurface
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import sign [as 别名]
def freesurface(model, eq):
"""
Generate the stencil that mirrors the field as a free surface modeling for
the acoustic wave equation.
Parameters
----------
model : Model
Physical model.
eq : Eq
Time-stepping stencil (time update) to mirror at the freesurface.
"""
lhs, rhs = eq.evaluate.args
# Get vertical dimension and corresponding subdimension
zfs = model.grid.subdomains['fsdomain'].dimensions[-1]
z = zfs.parent
# Functions present in the stencil
funcs = retrieve_functions(rhs)
mapper = {}
# Antisymmetric mirror at negative indices
# TODO: Make a proper "mirror_indices" tool function
for f in funcs:
zind = f.indices[-1]
if (zind - z).as_coeff_Mul()[0] < 0:
s = sign(zind.subs({z: zfs, z.spacing: 1}))
mapper.update({f: s * f.subs({zind: INT(abs(zind))})})
return Eq(lhs, rhs.subs(mapper), subdomain=model.grid.subdomains['fsdomain'])
示例5: cphase_to_sqrt_iswap
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import sign [as 别名]
def cphase_to_sqrt_iswap(a, b, turns):
"""Implement a C-Phase gate using two sqrt ISWAP gates and single-qubit
operations. The circuit is equivalent to cirq.CZPowGate(exponent=turns).
Output unitary:
[1 0 0 0],
[0 1 0 0],
[0 0 1 0],
[0 0 0 e^{i turns pi}].
Args:
a: the first qubit
b: the second qubit
turns: Exponent specifying the evolution time in number of rotations.
"""
theta = (turns % 2) * np.pi
if 0 <= theta <= np.pi:
sign = 1.
theta_prime = theta
elif np.pi < theta < 2 * np.pi:
sign = -1.
theta_prime = 2 * np.pi - theta
if np.isclose(theta, np.pi):
# If we are close to pi, just set values manually to avoid possible
# numerical errors with arcsin of greater than 1.0 (Ahem, Windows).
phi = np.pi / 2
xi = np.pi / 2
else:
phi = np.arcsin(np.sqrt(2) * np.sin(theta_prime / 4))
xi = np.arctan(np.tan(phi) / np.sqrt(2))
yield ops.rz(sign * 0.5 * theta_prime).on(a)
yield ops.rz(sign * 0.5 * theta_prime).on(b)
yield ops.rx(xi).on(a)
yield ops.X(b)**(-sign * 0.5)
yield SQRT_ISWAP_INV(a, b)
yield ops.rx(-2 * phi).on(a)
yield SQRT_ISWAP(a, b)
yield ops.rx(xi).on(a)
yield ops.X(b)**(sign * 0.5)
# Corrects global phase
yield ops.GlobalPhaseOperation(np.exp(sign * theta_prime * 0.25j))