本文整理汇总了Python中sympy.prod方法的典型用法代码示例。如果您正苦于以下问题:Python sympy.prod方法的具体用法?Python sympy.prod怎么用?Python sympy.prod使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy
的用法示例。
在下文中一共展示了sympy.prod方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _random_coprime_pair
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import prod [as 别名]
def _random_coprime_pair(entropy):
"""Returns a pair of random coprime integers."""
coprime_product = number.integer(entropy, False, min_abs=1)
factors = sympy.factorint(coprime_product)
def take():
prime = random.choice(list(factors.keys()))
power = factors[prime]
del factors[prime]
return prime ** power
if random.random() < 0.8 and len(factors) >= 2:
# Disallow trivial factoring where possible.
count_left = random.randint(1, len(factors) - 1)
count_right = len(factors) - count_left
else:
count_left = random.randint(0, len(factors))
count_right = len(factors) - count_left
left = sympy.prod([take() for _ in range(count_left)])
right = sympy.prod([take() for _ in range(count_right)])
assert left * right == coprime_product
return left, right
# @composition.module(number.is_positive_integer)
示例2: test_boson_states
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import prod [as 别名]
def test_boson_states():
a = BosonOp("a")
# Fock states
n = 3
assert (BosonFockBra(0) * BosonFockKet(1)).doit() == 0
assert (BosonFockBra(1) * BosonFockKet(1)).doit() == 1
assert qapply(BosonFockBra(n) * Dagger(a)**n * BosonFockKet(0)) \
== sqrt(prod(range(1, n+1)))
# Coherent states
alpha1, alpha2 = 1.2, 4.3
assert (BosonCoherentBra(alpha1) * BosonCoherentKet(alpha1)).doit() == 1
assert (BosonCoherentBra(alpha2) * BosonCoherentKet(alpha2)).doit() == 1
assert abs((BosonCoherentBra(alpha1) * BosonCoherentKet(alpha2)).doit() -
exp(-S(1) / 2 * (alpha1 - alpha2) ** 2)) < 1e-12
assert qapply(a * BosonCoherentKet(alpha1)) == \
alpha1 * BosonCoherentKet(alpha1)
示例3: newton_cotes_open
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import prod [as 别名]
def newton_cotes_open(index, **kwargs):
"""
Open Newton-Cotes formulae.
<https://math.stackexchange.com/a/1959071/36678>
"""
points = numpy.linspace(-1.0, 1.0, index + 2)[1:-1]
degree = index if (index + 1) % 2 == 0 else index - 1
#
n = index + 1
weights = numpy.empty(n - 1)
t = sympy.Symbol("t")
for r in range(1, n):
# Compare with get_weights().
f = sympy.prod([(t - i) for i in range(1, n) if i != r])
alpha = (
2
* (-1) ** (n - r + 1)
* sympy.integrate(f, (t, 0, n), **kwargs)
/ (math.factorial(r - 1) * math.factorial(n - 1 - r))
/ n
)
weights[r - 1] = alpha
return C1Scheme("Newton-Cotes (open)", degree, weights, points)
示例4: probability
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import prod [as 别名]
def probability(self, event):
# Specializations for optimization.
if isinstance(event, FiniteProductEvent):
assert len(self._spaces) == len(event.events)
return sympy.prod([
space.probability(event_slice)
for space, event_slice in zip(self._spaces, event.events)])
if isinstance(event, CountLevelSetEvent) and self.all_spaces_equal():
space = self._spaces[0]
counts = event.counts
probabilities = {
value: space.probability(DiscreteEvent({value}))
for value in six.iterkeys(counts)
}
num_events = sum(six.itervalues(counts))
assert num_events == len(self._spaces)
# Multinomial coefficient:
coeff = (
sympy.factorial(num_events) / sympy.prod(
[sympy.factorial(i) for i in six.itervalues(counts)]))
return coeff * sympy.prod([
pow(probabilities[value], counts[value])
for value in six.iterkeys(counts)
])
raise ValueError('Unhandled event type {}'.format(type(event)))
示例5: __init__
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import prod [as 别名]
def __init__(self, dims):
"""Constructs a shape whose i-th dim is dims[i].
Each dim can be one of the following types:
integer: represents the dimension is a known and fixed.
string: represents the dimension is an unknown and a sympy dummy symbol is
used to represent it. Also note that contents of strings only matter for
logging/printing. Even if the same string is given on multiple
dimensions, it doesn't mean that they are the same.
sympy expression: represents a dimension which possibly
depends on dimensions of other shapes.
Args:
dims: A list of either integer, string or sympy.Symbol.
"""
self._shape = []
for x in dims:
assert x is not None, str(dims)
if isinstance(x, six.string_types):
# NOTE: Dummy(x) creates a unique symbol. I.e., the value of x has no
# meaning except for printing, etc.
self._shape.append(sympy.Dummy(x, integer=True))
else:
# Converts x to a sympy type. E.g., int to sympy.Integer.
self._shape.append(sympy.sympify(x))
self._size = sympy.prod(self._shape)
示例6: newton_cotes_closed
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import prod [as 别名]
def newton_cotes_closed(index, **kwargs):
"""
Closed Newton-Cotes formulae.
<https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas#Closed_Newton.E2.80.93Cotes_formulae>,
<http://mathworld.wolfram.com/Newton-CotesFormulas.html>.
"""
points = numpy.linspace(-1.0, 1.0, index + 1)
degree = index + 1 if index % 2 == 0 else index
# Formula (26) from
# <http://mathworld.wolfram.com/Newton-CotesFormulas.html>.
# Note that Sympy carries out all operations in rationals, i.e.,
# _exactly_. Only at the end, the rational is converted into a float.
n = index
weights = numpy.empty(n + 1)
t = sympy.Symbol("t")
for r in range(n + 1):
# Compare with get_weights().
f = sympy.prod([(t - i) for i in range(n + 1) if i != r])
alpha = (
2
* (-1) ** (n - r)
* sympy.integrate(f, (t, 0, n), **kwargs)
/ (math.factorial(r) * math.factorial(n - r))
/ index
)
weights[r] = alpha
return C1Scheme("Newton-Cotes (closed)", degree, weights, points)
示例7: symbolic_coeffs_and_diffs
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import prod [as 别名]
def symbolic_coeffs_and_diffs(expr,u):
'''
returns the coefficients for each term containing u or a derivative
of u. Also returns the variables that derivatives of u are with
respect to
'''
# convert expr to a list of terms
expr = expr.expand()
expr = expr.as_ordered_terms()
# throw out terms not containing u
expr = [i for i in expr if i.has(u)]
coeffs = []
diffs = []
for e in expr:
# if the expression is a product then expand it into multipliers
if e.is_Mul:
e = sp.flatten(e.as_coeff_mul())
else:
e = [sp.Integer(1),e]
# find multipliers without the queried term
without_u = [i for i in e if not i.has(u)]
coeffs += [without_u]
# find multipliers with the queried term
with_u = [i for i in e if i.has(u)]
if not (len(with_u) == 1):
raise FormulationError(
'the term %s has multiple occurrences of %s' % (sp.prod(e),u))
base,diff = derivative_order(with_u[0])
if not (base == u):
raise FormulationError(
'cannot express %s as a differential operation of %s' % (base,u))
diffs += diff,
return coeffs,diffs
示例8: volume_cell
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import prod [as 别名]
def volume_cell(self):
"""Volume of a single cell e.g h_x*h_y*h_z in 3D."""
return prod(d.spacing for d in self.dimensions).subs(self.spacing_map)