本文整理汇总了Python中sympy.acos方法的典型用法代码示例。如果您正苦于以下问题:Python sympy.acos方法的具体用法?Python sympy.acos怎么用?Python sympy.acos使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy
的用法示例。
在下文中一共展示了sympy.acos方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_conv7b
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import acos [as 别名]
def test_conv7b():
x = sympy.Symbol("x")
y = sympy.Symbol("y")
assert sympify(sympy.sin(x/3)) == sin(Symbol("x") / 3)
assert sympify(sympy.sin(x/3)) != cos(Symbol("x") / 3)
assert sympify(sympy.cos(x/3)) == cos(Symbol("x") / 3)
assert sympify(sympy.tan(x/3)) == tan(Symbol("x") / 3)
assert sympify(sympy.cot(x/3)) == cot(Symbol("x") / 3)
assert sympify(sympy.csc(x/3)) == csc(Symbol("x") / 3)
assert sympify(sympy.sec(x/3)) == sec(Symbol("x") / 3)
assert sympify(sympy.asin(x/3)) == asin(Symbol("x") / 3)
assert sympify(sympy.acos(x/3)) == acos(Symbol("x") / 3)
assert sympify(sympy.atan(x/3)) == atan(Symbol("x") / 3)
assert sympify(sympy.acot(x/3)) == acot(Symbol("x") / 3)
assert sympify(sympy.acsc(x/3)) == acsc(Symbol("x") / 3)
assert sympify(sympy.asec(x/3)) == asec(Symbol("x") / 3)
示例2: liu_vinokur_12
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import acos [as 别名]
def liu_vinokur_12():
lmbda = frac(4, 27) * (
4 * sqrt(79) * cos((acos(67 * sqrt(79) / 24964) + 2 * numpy.pi) / 3) + 71
)
alpha1 = (+sqrt(9 * lmbda ** 2 - 248 * lmbda + 1680) + 28 - 3 * lmbda) / (
112 - 10 * lmbda
)
alpha2 = (-sqrt(9 * lmbda ** 2 - 248 * lmbda + 1680) + 28 - 3 * lmbda) / (
112 - 10 * lmbda
)
w1 = ((21 - lmbda) * alpha2 - 7) / (420 * alpha1 ** 2 * (alpha2 - alpha1))
w2 = ((21 - lmbda) * alpha1 - 7) / (420 * alpha2 ** 2 * (alpha1 - alpha2))
weights = numpy.concatenate(
[numpy.full(4, w1), numpy.full(4, w2), numpy.full(6, lmbda ** 2 / 840)]
)
points = numpy.concatenate(
[_r_alpha(alpha1), _r_alpha(alpha2), _r_beta(1 / sqrt(lmbda))]
)
degree = 5
return T3Scheme("Liu-Vinokur 12", weights, points, degree, source)
示例3: test_conv7
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import acos [as 别名]
def test_conv7():
x = Symbol("x")
y = Symbol("y")
assert sin(x/3) == sin(sympy.Symbol("x") / 3)
assert cos(x/3) == cos(sympy.Symbol("x") / 3)
assert tan(x/3) == tan(sympy.Symbol("x") / 3)
assert cot(x/3) == cot(sympy.Symbol("x") / 3)
assert csc(x/3) == csc(sympy.Symbol("x") / 3)
assert sec(x/3) == sec(sympy.Symbol("x") / 3)
assert asin(x/3) == asin(sympy.Symbol("x") / 3)
assert acos(x/3) == acos(sympy.Symbol("x") / 3)
assert atan(x/3) == atan(sympy.Symbol("x") / 3)
assert acot(x/3) == acot(sympy.Symbol("x") / 3)
assert acsc(x/3) == acsc(sympy.Symbol("x") / 3)
assert asec(x/3) == asec(sympy.Symbol("x") / 3)
assert sin(x/3)._sympy_() == sympy.sin(sympy.Symbol("x") / 3)
assert sin(x/3)._sympy_() != sympy.cos(sympy.Symbol("x") / 3)
assert cos(x/3)._sympy_() == sympy.cos(sympy.Symbol("x") / 3)
assert tan(x/3)._sympy_() == sympy.tan(sympy.Symbol("x") / 3)
assert cot(x/3)._sympy_() == sympy.cot(sympy.Symbol("x") / 3)
assert csc(x/3)._sympy_() == sympy.csc(sympy.Symbol("x") / 3)
assert sec(x/3)._sympy_() == sympy.sec(sympy.Symbol("x") / 3)
assert asin(x/3)._sympy_() == sympy.asin(sympy.Symbol("x") / 3)
assert acos(x/3)._sympy_() == sympy.acos(sympy.Symbol("x") / 3)
assert atan(x/3)._sympy_() == sympy.atan(sympy.Symbol("x") / 3)
assert acot(x/3)._sympy_() == sympy.acot(sympy.Symbol("x") / 3)
assert acsc(x/3)._sympy_() == sympy.acsc(sympy.Symbol("x") / 3)
assert asec(x/3)._sympy_() == sympy.asec(sympy.Symbol("x") / 3)
示例4: cartesian_to_spherical_sympy
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import acos [as 别名]
def cartesian_to_spherical_sympy(X):
vacos = numpy.vectorize(sympy.acos)
return numpy.stack([_atan2_0(X), vacos(X[:, 2])], axis=1)
示例5: zeeman_theta
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import acos [as 别名]
def zeeman_theta(u, v, w, z=0, a=0):
""" Find Zeeman angle along the magnetic field
"""
try:
import sympy as sp
except ModuleNotFoundError:
raise RuntimeError("Must have sympy installed to use")
U, V, W, Z, A = np.meshgrid(u, v, w, z, a, copy=False)
N = len(U.flatten())
if type(sp.symbols('u')) == type(u):
sin = sp.sin
cos = sp.cos
acos = sp.acos
sqrt = sp.sqrt
d = np.empty((N), type(u))
else:
sin = np.sin
cos = np.cos
acos = np.arccos
sqrt = np.sqrt
d = np.empty((N), float)
for i in range(N):
H = np.array([U.flat[i], V.flat[i], W.flat[i]])
L = np.array([sin(Z.flat[i])*cos(A.flat[i]),
sin(Z.flat[i])*sin(A.flat[i]), cos(Z.flat[i])])
d[i] = acos(H.dot(L) / sqrt(H.dot(H)))
if type(sp.symbols('u')) == type(u):
return d[0]
shape = []
for input in [u, v, w, z, a]:
if np.isscalar(input):
continue
shape.append(len(input))
if shape:
d = d.reshape(shape)
else:
d = d[0]
return d