本文整理汇总了Python中sympy.abc.x方法的典型用法代码示例。如果您正苦于以下问题:Python abc.x方法的具体用法?Python abc.x怎么用?Python abc.x使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy.abc
的用法示例。
在下文中一共展示了abc.x方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_pretty_sets
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_pretty_sets():
s = FiniteSet
assert pretty(s([x*y, x**2])) == \
"""\
2 \n\
{x , x*y}\
"""
assert pretty(s(range(1, 6))) == "{1, 2, 3, 4, 5}"
assert pretty(s(range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}"
for s in (frozenset, set):
assert pretty(s([x*y, x**2])) == \
"""\
%s 2 \n\
%s([x , x*y])\
""" % (" " * len(s.__name__), s.__name__)
assert pretty(s(range(1, 6))) == "%s([1, 2, 3, 4, 5])" % s.__name__
assert pretty(s(range(1, 13))) == \
"%s([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])" % s.__name__
示例2: test_pretty_special_functions
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_pretty_special_functions():
x, y = symbols("x y")
# atan2
expr = atan2(y/sqrt(200), sqrt(x))
ascii_str = \
"""\
/ ___ \\\n\
|\\/ 2 *y ___|\n\
atan2|-------, \\/ x |\n\
\\ 20 /\
"""
ucode_str = \
u("""\
⎛ ___ ⎞\n\
⎜╲╱ 2 ⋅y ___⎟\n\
atan2⎜───────, ╲╱ x ⎟\n\
⎝ 20 ⎠\
""")
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
示例3: test_expint
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_expint():
expr = Ei(x)
string = 'Ei(x)'
assert pretty(expr) == string
assert upretty(expr) == string
expr = expint(1, z)
ucode_str = u("E₁(z)")
ascii_str = "expint(1, z)"
assert pretty(expr) == ascii_str
assert upretty(expr) == ucode_str
assert pretty(Shi(x)) == 'Shi(x)'
assert pretty(Si(x)) == 'Si(x)'
assert pretty(Ci(x)) == 'Ci(x)'
assert pretty(Chi(x)) == 'Chi(x)'
assert upretty(Shi(x)) == 'Shi(x)'
assert upretty(Si(x)) == 'Si(x)'
assert upretty(Ci(x)) == 'Ci(x)'
assert upretty(Chi(x)) == 'Chi(x)'
示例4: test_issue_3640
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_issue_3640():
ascii_str = \
"""\
1 \n\
-----\n\
___\n\
\/ x \
"""
ucode_str = \
u("""\
1 \n\
─────\n\
___\n\
╲╱ x \
""")
assert pretty(1/sqrt(x)) == ascii_str
assert upretty(1/sqrt(x)) == ucode_str
示例5: test_latex_symbols
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_latex_symbols():
Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
mass, volume = symbols('mass, volume')
assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
assert latex(Gamma * lmbda) == r"\Gamma \lambda"
assert latex(Symbol('q1')) == r"q_{1}"
assert latex(Symbol('q21')) == r"q_{21}"
assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
assert latex(Symbol('omega1')) == r"\omega_{1}"
assert latex(Symbol('91')) == r"91"
assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
assert latex(Symbol('C^orig')) == r"C^{orig}"
assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
assert latex(Symbol('e^Alpha')) == r"e^{A}"
assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
示例6: test_latex_integrals
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_latex_integrals():
assert latex(Integral(log(x), x)) == r"\int \log{\left (x \right )}\, dx"
assert latex(Integral(x**2, (x, 0, 1))) == r"\int_{0}^{1} x^{2}\, dx"
assert latex(Integral(x**2, (x, 10, 20))) == r"\int_{10}^{20} x^{2}\, dx"
assert latex(Integral(
y*x**2, (x, 0, 1), y)) == r"\int\int_{0}^{1} x^{2} y\, dx\, dy"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') \
== r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
== r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
assert latex(Integral(x, (x, 0))) == r"\int^{0} x\, dx"
assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
assert latex(Integral(x*y*z*t, x, y, z, t)) == \
r"\iiiint t x y z\, dx\, dy\, dz\, dt"
assert latex(Integral(x, x, x, x, x, x, x)) == \
r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
assert latex(Integral(x, x, y, (z, 0, 1))) == \
r"\int_{0}^{1}\int\int x\, dx\, dy\, dz"
示例7: test_latex_issue1477
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_latex_issue1477():
assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
assert latex(Symbol("beta_13")) == r"\beta_{13}"
assert latex(Symbol("x_a_b")) == r"x_{a b}"
assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
assert latex(Symbol("x_a_1")) == r"x_{a 1}"
assert latex(Symbol("x_1_a")) == r"x_{1 a}"
assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
示例8: test_latex_FracElement
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_latex_FracElement():
Fuv, u,v = field("u,v", ZZ);
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex(x/3) == r"\frac{x}{3}"
assert latex(x/z) == r"\frac{x}{z}"
assert latex(x*y/z) == r"\frac{x y}{z}"
assert latex(x/(z*t)) == r"\frac{x}{z t}"
assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
示例9: test_matMul
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_matMul():
from sympy import MatrixSymbol
from sympy.printing.latex import LatexPrinter
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
x = Symbol('x')
l = LatexPrinter()
assert l._print_MatMul(2*A) == '2 A'
assert l._print_MatMul(2*x*A) == '2 x A'
assert l._print_MatMul(-2*A) == '-2 A'
assert l._print_MatMul(1.5*A) == '1.5 A'
assert l._print_MatMul(sqrt(2)*A) == r'\sqrt{2} A'
assert l._print_MatMul(-sqrt(2)*A) == r'- \sqrt{2} A'
assert l._print_MatMul(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
assert l._print_MatMul(-2*A*(A + 2*B)) in [r'-2 A \left(A + 2 B\right)',
r'-2 A \left(2 B + A\right)']
示例10: test_integral_transforms
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_integral_transforms():
x = Symbol("x")
k = Symbol("k")
f = Function("f")
a = Symbol("a")
b = Symbol("b")
assert latex(MellinTransform(f(x), x, k)) == r"\mathcal{M}_{x}\left[f{\left (x \right )}\right]\left(k\right)"
assert latex(InverseMellinTransform(f(k), k, x, a, b)) == r"\mathcal{M}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)"
assert latex(LaplaceTransform(f(x), x, k)) == r"\mathcal{L}_{x}\left[f{\left (x \right )}\right]\left(k\right)"
assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == r"\mathcal{L}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)"
assert latex(FourierTransform(f(x), x, k)) == r"\mathcal{F}_{x}\left[f{\left (x \right )}\right]\left(k\right)"
assert latex(InverseFourierTransform(f(k), k, x)) == r"\mathcal{F}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)"
assert latex(CosineTransform(f(x), x, k)) == r"\mathcal{COS}_{x}\left[f{\left (x \right )}\right]\left(k\right)"
assert latex(InverseCosineTransform(f(k), k, x)) == r"\mathcal{COS}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)"
assert latex(SineTransform(f(x), x, k)) == r"\mathcal{SIN}_{x}\left[f{\left (x \right )}\right]\left(k\right)"
assert latex(InverseSineTransform(f(k), k, x)) == r"\mathcal{SIN}^{-1}_{k}\left[f{\left (k \right )}\right]\left(x\right)"
示例11: test_Modules
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_Modules():
from sympy.polys.domains import QQ
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
assert latex(M) == \
r"\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>"
I = R.ideal(x**2, y)
assert latex(I) == r"\left< {x^{2}},{y} \right>"
Q = F / M
assert latex(Q) == r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}"
assert latex(Q.submodule([1, x**3/2], [2, y])) == \
r"\left< {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}},{{\left[ {2},{y} \right]} + {\left< {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right>}} \right>"
h = homomorphism(QQ.old_poly_ring(x).free_module(2), QQ.old_poly_ring(x).free_module(2), [0, 0])
assert latex(h) == r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : {{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
示例12: test_latex_greek_functions
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_latex_greek_functions():
# bug because capital greeks that have roman equivalents should not use
# \Alpha, \Beta, \Eta, etc.
s = Function('Alpha')
assert latex(s) == r'A'
assert latex(s(x)) == r'A{\left (x \right )}'
s = Function('Beta')
assert latex(s) == r'B'
s = Function('Eta')
assert latex(s) == r'H'
assert latex(s(x)) == r'H{\left (x \right )}'
# bug because sympy.core.numbers.Pi is special
p = Function('Pi')
# assert latex(p(x)) == r'\Pi{\left (x \right )}'
assert latex(p) == r'\Pi'
# bug because not all greeks are included
c = Function('chi')
assert latex(c(x)) == r'\chi{\left (x \right )}'
assert latex(c) == r'\chi'
示例13: test_dotprint
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def test_dotprint():
text = dotprint(x+2, repeat=False)
assert all(e in text for e in dotedges(x+2, repeat=False))
assert all(n in text for n in map(lambda expr: dotnode(expr, repeat=False), (x, Integer(2), x+2)))
assert 'digraph' in text
text = dotprint(x+x**2, repeat=False)
assert all(e in text for e in dotedges(x+x**2, repeat=False))
assert all(n in text for n in map(lambda expr: dotnode(expr, repeat=False), (x, Integer(2), x**2)))
assert 'digraph' in text
text = dotprint(x+x**2, repeat=True)
assert all(e in text for e in dotedges(x+x**2, repeat=True))
assert all(n in text for n in map(lambda expr: dotnode(expr, pos=()), [x + x**2]))
text = dotprint(x**x, repeat=True)
assert all(e in text for e in dotedges(x**x, repeat=True))
assert all(n in text for n in [dotnode(x, pos=(0,)), dotnode(x, pos=(1,))])
assert 'digraph' in text
示例14: _optimizationStep
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def _optimizationStep(self, x):
"""
Wrapper for the fit method to use it in conjunction with scipy.optimize.minimize.
Args:
x(list): unpacked list of current hyper-parameter values
"""
# set new hyperparameters in transition model
self._setSelectedHyperParameters(x)
# compute log-evidence
self.fit(evidenceOnly=True, silent=True)
print(' + Log10-evidence: {:.5f}'.format(self.logEvidence / np.log(10)), '- Parameter values:', x)
# return negative log-evidence (is minimized to maximize evidence)
return -self.logEvidence
示例15: _setAllHyperParameters
# 需要导入模块: from sympy import abc [as 别名]
# 或者: from sympy.abc import x [as 别名]
def _setAllHyperParameters(self, x):
"""
Sets all current hyper-parameters, based on a flattened list of parameter values.
Args:
x(list): list of values (e.g. from _unpackSelectedHyperParameters)
"""
paramList = list(x[:]) # make copy of parameter list
nameTree = self._unpackHyperParameters(self.transitionModel)
namesFlat = list(flatten(self._unpackHyperParameters(self.transitionModel)))
for name in namesFlat:
index = recursiveIndex(nameTree, name)
# get correct sub-model
model = self.transitionModel
for i in index[:-1]:
model = model.models[i]
model.hyperParameterValues[model.hyperParameterNames.index(name)] = paramList[0]
paramList.pop(0)
# remove occurrence from nameTree (if name is listed twice, use second occurrence...)
assignNestedItem(nameTree, index, ' ')