当前位置: 首页>>代码示例>>Python>>正文


Python sympy.Sum方法代码示例

本文整理汇总了Python中sympy.Sum方法的典型用法代码示例。如果您正苦于以下问题:Python sympy.Sum方法的具体用法?Python sympy.Sum怎么用?Python sympy.Sum使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy的用法示例。


在下文中一共展示了sympy.Sum方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: duration

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Sum [as 别名]
def duration(self) -> ExpressionScalar:
        step_size = self._loop_range.step.sympified_expression
        loop_index = sympy.symbols(self._loop_index)
        sum_index = sympy.symbols(self._loop_index)

        # replace loop_index with sum_index dependable expression
        body_duration = self.body.duration.sympified_expression.subs({loop_index: self._loop_range.start.sympified_expression + sum_index*step_size})

        # number of sum contributions
        step_count = sympy.ceiling((self._loop_range.stop.sympified_expression-self._loop_range.start.sympified_expression) / step_size)
        sum_start = 0
        sum_stop = sum_start + (sympy.functions.Max(step_count, 1) - 1)

        # expression used if step_count >= 0
        finite_duration_expression = sympy.Sum(body_duration, (sum_index, sum_start, sum_stop))

        duration_expression = sympy.Piecewise((0, step_count <= 0),
                                              (finite_duration_expression, True))

        return ExpressionScalar(duration_expression) 
开发者ID:qutech,项目名称:qupulse,代码行数:22,代码来源:loop_pulse_template.py

示例2: integral

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Sum [as 别名]
def integral(self) -> Dict[ChannelID, ExpressionScalar]:

        step_size = self._loop_range.step.sympified_expression
        loop_index = sympy.symbols(self._loop_index)
        sum_index = sympy.symbols(self._loop_index)

        body_integrals = self.body.integral
        body_integrals = {
            c: body_integrals[c].sympified_expression.subs(
                {loop_index: self._loop_range.start.sympified_expression + sum_index*step_size}
            )
            for c in body_integrals
        }

        # number of sum contributions
        step_count = sympy.ceiling((self._loop_range.stop.sympified_expression-self._loop_range.start.sympified_expression) / step_size)
        sum_start = 0
        sum_stop = sum_start + (sympy.functions.Max(step_count, 1) - 1)

        for c in body_integrals:
            channel_integral_expr = sympy.Sum(body_integrals[c], (sum_index, sum_start, sum_stop))
            body_integrals[c] = ExpressionScalar(channel_integral_expr)

        return body_integrals 
开发者ID:qutech,项目名称:qupulse,代码行数:26,代码来源:loop_pulse_template.py

示例3: _needs_mul_brackets

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Sum [as 别名]
def _needs_mul_brackets(self, expr, last=False):
        """
        Returns True if the expression needs to be wrapped in brackets when
        printed as part of a Mul, False otherwise. This is True for Add,
        but also for some container objects that would not need brackets
        when appearing last in a Mul, e.g. an Integral. ``last=True``
        specifies that this expr is the last to appear in a Mul.
        """
        from sympy import Integral, Piecewise, Product, Sum
        return expr.is_Add or (not last and
            any([expr.has(x) for x in (Integral, Piecewise, Product, Sum)])) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:13,代码来源:latex.py

示例4: _symbol

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Sum [as 别名]
def _symbol(self):
        # TODO: naive implementation
        dummy_loss = sympy.Symbol("dummy_loss")
        if self.max_iter:
            max_iter = self.max_iter
        else:
            max_iter = sympy.Symbol(sympy.latex(self.timpstep_symbol) + "_{max}")

        _symbol = sympy.Sum(dummy_loss, (self.timpstep_symbol, 1, max_iter))
        _symbol = _symbol.subs({dummy_loss: self.step_loss._symbol})
        return _symbol 
开发者ID:masa-su,项目名称:pixyz,代码行数:13,代码来源:iteration.py

示例5: handle_sum_or_prod

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Sum [as 别名]
def handle_sum_or_prod(func, name):
    val      = convert_mp(func.mp())
    iter_var = convert_expr(func.subeq().equality().expr(0))
    start    = convert_expr(func.subeq().equality().expr(1))
    if func.supexpr().expr(): # ^{expr}
        end = convert_expr(func.supexpr().expr())
    else: # ^atom
        end = convert_atom(func.supexpr().atom())
        

    if name == "summation":
        return sympy.Sum(val, (iter_var, start, end))
    elif name == "product":
        return sympy.Product(val, (iter_var, start, end)) 
开发者ID:augustt198,项目名称:latex2sympy,代码行数:16,代码来源:process_latex.py

示例6: _print_Mul

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Sum [as 别名]
def _print_Mul(self, product):
        a = []  # items in the numerator
        b = []  # items that are in the denominator (if any)

        if self.order not in ('old', 'none'):
            args = product.as_ordered_factors()
        else:
            args = product.args

        # Gather terms for numerator/denominator
        for item in args:
            if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
                b.append(C.Pow(item.base, -item.exp))
            elif item.is_Rational and item is not S.Infinity:
                if item.p != 1:
                    a.append( C.Rational(item.p) )
                if item.q != 1:
                    b.append( C.Rational(item.q) )
            else:
                a.append(item)

        from sympy import Integral, Piecewise, Product, Sum

        # Convert to pretty forms. Add parens to Add instances if there
        # is more than one term in the numer/denom
        for i in xrange(0, len(a)):
            if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and
                    isinstance(a[i], (Integral, Piecewise, Product, Sum))):
                a[i] = prettyForm(*self._print(a[i]).parens())
            else:
                a[i] = self._print(a[i])

        for i in xrange(0, len(b)):
            if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and
                    isinstance(b[i], (Integral, Piecewise, Product, Sum))):
                b[i] = prettyForm(*self._print(b[i]).parens())
            else:
                b[i] = self._print(b[i])

        # Construct a pretty form
        if len(b) == 0:
            return prettyForm.__mul__(*a)
        else:
            if len(a) == 0:
                a.append( self._print(S.One) )
            return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)

    # A helper function for _print_Pow to print x**(1/n) 
开发者ID:ktraunmueller,项目名称:Computable,代码行数:50,代码来源:pretty.py

示例7: normal_ordered_form

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Sum [as 别名]
def normal_ordered_form(expr, independent=False, recursive_limit=10,
                        _recursive_depth=0):
    """Write an expression with bosonic or fermionic operators on normal
    ordered form, where each term is normally ordered. Note that this
    normal ordered form is equivalent to the original expression.

    Parameters
    ==========

    expr : expression
        The expression write on normal ordered form.

    recursive_limit : int (default 10)
        The number of allowed recursive applications of the function.

    Examples
    ========

    >>> from sympsi import Dagger
    >>> from sympsi.boson import BosonOp
    >>> from sympsi.operatorordering import normal_ordered_form
    >>> a = BosonOp("a")
    >>> normal_ordered_form(a * Dagger(a))
    1 + Dagger(a)*a
    """

    if _recursive_depth > recursive_limit:
        warnings.warn("Too many recursions, aborting")
        return expr

    if isinstance(expr, Add):
        return _normal_ordered_form_terms(expr,
                                          recursive_limit=recursive_limit,
                                          _recursive_depth=_recursive_depth,
                                          independent=independent)
    elif isinstance(expr, Mul):
        return _normal_ordered_form_factor(expr,
                                           recursive_limit=recursive_limit,
                                           _recursive_depth=_recursive_depth,
                                           independent=independent)

    elif isinstance(expr, Expectation):
        return Expectation(normal_ordered_form(expr.expression), 
                           expr.is_normal_order)
                           
    elif isinstance(expr, (Sum, Integral)):
        nargs = [normal_ordered_form(expr.function,
                                     recursive_limit=recursive_limit,
                                     _recursive_depth=_recursive_depth,
                                     independent=independent)]
        for lim in expr.limits:
            nargs.append(lim)
        return type(expr)(*nargs)

    else:
        return expr 
开发者ID:sympsi,项目名称:sympsi,代码行数:58,代码来源:operatorordering.py


注:本文中的sympy.Sum方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。