本文整理汇总了Python中sympy.Rational方法的典型用法代码示例。如果您正苦于以下问题:Python sympy.Rational方法的具体用法?Python sympy.Rational怎么用?Python sympy.Rational使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy
的用法示例。
在下文中一共展示了sympy.Rational方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testDiv
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def testDiv(self):
div = ops.Div(2, 3)
self.assertEqual(str(div), '2/3')
self.assertEqual(div.sympy(), sympy.Rational(2, 3))
div = ops.Div(2, sympy.Rational(4, 5))
self.assertEqual(str(div), '2/(4/5)')
self.assertEqual(div.sympy(), sympy.Rational(5, 2))
div = ops.Div(1, ops.Div(2, 3))
self.assertEqual(str(div), '1/(2/3)')
self.assertEqual(div.sympy(), sympy.Rational(3, 2))
div = ops.Div(ops.Div(2, 3), 4)
self.assertEqual(str(div), '(2/3)/4')
self.assertEqual(div.sympy(), sympy.Rational(1, 6))
div = ops.Div(2, ops.Mul(3, 4))
self.assertEqual(str(div), '2/(3*4)')
div = ops.Div(2, sympy.Function('f')(sympy.Symbol('x')))
self.assertEqual(str(div), '2/f(x)')
示例2: testPow
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def testPow(self):
pow_ = ops.Pow(2, 3)
self.assertEqual(str(pow_), '2**3')
self.assertEqual(pow_.sympy(), 8)
pow_ = ops.Pow(4, sympy.Rational(1, 2))
self.assertEqual(str(pow_), '4**(1/2)')
self.assertEqual(pow_.sympy(), 2)
pow_ = ops.Pow(sympy.Rational(1, 2), 3)
self.assertEqual(str(pow_), '(1/2)**3')
self.assertEqual(pow_.sympy(), 1/8)
pow_ = ops.Pow(3, ops.Pow(2, 1))
self.assertEqual(str(pow_), '3**(2**1)')
self.assertEqual(pow_.sympy(), 9)
pow_ = ops.Pow(ops.Pow(2, 3), 4)
self.assertEqual(str(pow_), '(2**3)**4')
self.assertEqual(pow_.sympy(), 4096)
pow_ = ops.Pow(-5, 2)
self.assertEqual(str(pow_), '(-5)**2')
self.assertEqual(pow_.sympy(), 25)
示例3: __init__
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def __init__(self, value):
"""Initializes a `Decimal`.
Args:
value: (Sympy) value to display as a decimal.
Raises:
ValueError: If `value` cannot be represented as a non-terminating decimal.
"""
self._value = sympy.Rational(value)
numer = int(sympy.numer(self._value))
denom = int(sympy.denom(self._value))
denom_factors = list(sympy.factorint(denom).keys())
for factor in denom_factors:
if factor not in [2, 5]:
raise ValueError('Cannot represent {} as a non-recurring decimal.'
.format(value))
self._decimal = decimal.Decimal(numer) / decimal.Decimal(denom)
示例4: testBasic
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def testBasic(self):
space = probability.SampleWithoutReplacementSpace({0: 1, 1: 1}, 2)
event_0_0 = probability.FiniteProductEvent(
[probability.DiscreteEvent({0}), probability.DiscreteEvent({0})])
event_0_1 = probability.FiniteProductEvent(
[probability.DiscreteEvent({0}), probability.DiscreteEvent({1})])
p_0_0 = space.probability(event_0_0)
p_0_1 = space.probability(event_0_1)
self.assertEqual(p_0_0, 0)
self.assertEqual(p_0_1, sympy.Rational(1, 2))
space = probability.SampleWithoutReplacementSpace({0: 1, 1: 0}, 1)
event_0 = probability.FiniteProductEvent([probability.DiscreteEvent({0})])
event_1 = probability.FiniteProductEvent([probability.DiscreteEvent({1})])
event_2 = probability.FiniteProductEvent([probability.DiscreteEvent({2})])
p_0 = space.probability(event_0)
p_1 = space.probability(event_1)
p_2 = space.probability(event_2)
self.assertEqual(p_0, 1)
self.assertEqual(p_1, 0)
self.assertEqual(p_2, 0)
示例5: test_fcode_Pow
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def test_fcode_Pow():
x, y = symbols('x,y')
n = symbols('n', integer=True)
assert fcode(x**3) == " x**3"
assert fcode(x**(y**3)) == " x**(y**3)"
assert fcode(1/(sin(x)*3.5)**(x - y**x)/(x**2 + y)) == \
" (3.5d0*sin(x))**(-x + y**x)/(x**2 + y)"
assert fcode(sqrt(x)) == ' sqrt(x)'
assert fcode(sqrt(n)) == ' sqrt(dble(n))'
assert fcode(x**0.5) == ' sqrt(x)'
assert fcode(sqrt(x)) == ' sqrt(x)'
assert fcode(sqrt(10)) == ' sqrt(10.0d0)'
assert fcode(x**-1.0) == ' 1.0/x'
assert fcode(x**-2.0,
assign_to='y',
source_format='free',
human=True) == 'y = x**(-2.0d0)' # 2823
assert fcode(x**Rational(3, 7)) == ' x**(3.0d0/7.0d0)'
示例6: franke_1
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def franke_1(lmbda):
assert -frac(9, 5) <= lmbda <= frac(9, 4)
a = sqrt(frac(9 + 5 * lmbda, 15))
b = sqrt(frac(9 - 4 * lmbda, 15))
c = sqrt(frac(3, 5))
weights, points = concat(
zero(frac(16 * (4 + 5 * lmbda), 9 * (9 + 5 * lmbda))),
pm2([frac(25, 9 * (9 - 4 * lmbda)), b, c]),
pm(
[frac(40, 9 * (9 + 5 * lmbda)), a, 0],
[frac(40 * (1 - lmbda), 9 * (9 - 4 * lmbda)), 0, c],
),
)
weights /= 4
return C2Scheme(f"Franke(1, {lmbda})", weights, points, 5, source)
示例7: _stroud_5_5
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def _stroud_5_5(n, variant_a, symbolic=False):
frac = sympy.Rational if symbolic else lambda a, b: a / b
sqrt = sympy.sqrt if symbolic else math.sqrt
p_m = +1 if variant_a else -1
# r is complex-valued for n >= 3
r = sqrt((n + 2 + p_m * (n - 1) * sqrt(2 * (n + 2))) / (2 * n))
s = sqrt((n + 2 - p_m * sqrt(2 * (n + 2))) / (2 * n))
A = frac(2, n + 2)
B = frac(1, 2 ** n * (n + 2))
data = [(A, [n * [0]]), (B, fsd(n, (r, 1), (s, n - 1)))]
points, weights = untangle(data)
variant = "a" if variant_a else "b"
return Enr2Scheme(f"Stroud Enr2 5-5{variant}", n, weights, points, 5, source)
示例8: stroud_enr2_5_6
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def stroud_enr2_5_6(n, symbolic=False):
frac = sympy.Rational if symbolic else lambda a, b: a / b
sqrt = sympy.sqrt if symbolic else math.sqrt
assert n >= 5
sqrt2 = sqrt(2)
sqrt2n1 = sqrt(2 * (n + 1))
r = sqrt((n - sqrt2 + (n - 1) * sqrt2n1) / (2 * n))
s = sqrt((n - sqrt2 - sqrt2n1) / (2 * n))
t = sqrt((1 + sqrt2) / 2)
A = frac(1, 2 ** n * (n + 1))
data = [(A, fsd(n, (r, 1), (s, n - 1))), (A, pm(n * [t]))]
points, weights = untangle(data)
return Enr2Scheme("Stroud Enr2 5-6", n, weights, points, 5, source)
示例9: xiu
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def xiu(n):
points = []
for k in range(n + 1):
pt = []
# Slight adaptation:
# The article has points for the weight 1/sqrt(2*pi) exp(−x**2/2)
# so divide by sqrt(2) to adapt for 1/sqrt(pi) exp(−x ** 2)
for r in range(1, n // 2 + 1):
alpha = (2 * r * k * pi) / (n + 1)
pt += [cos(alpha), sin(alpha)]
if n % 2 == 1:
pt += [(-1) ** k / sqrt(2)]
points.append(pt)
points = numpy.array(points)
weights = numpy.full(n + 1, frac(1, n + 1))
return Enr2Scheme("Xiu", n, weights, points, 2, source)
示例10: cools_haegemans_1
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def cools_haegemans_1(n, delta2=1, symbolic=False):
frac = sympy.Rational if symbolic else lambda a, b: a / b
sqrt = sympy.sqrt if symbolic else math.sqrt
assert frac(1, 2) <= delta2
m = 1
w0 = frac(2 * delta2 - 1, 2 * delta2)
w = frac(_mu(2, symbolic) ** m * _mu(0, symbolic) ** (n - m), 2 ** n * delta2 ** m)
data = [
(w0, z(n)),
(w, pm(n * [sqrt(delta2)])),
]
points, weights = untangle(data)
return Enr2Scheme("Cools-Haegemans 1", n, weights, points, 3, _source)
示例11: _sample_conversion_decimal
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def _sample_conversion_decimal(dimension, is_extrapolation):
"""Samples to and from units and values."""
base_unit, target_unit = random.sample(list(dimension.keys()), 2)
scale = sympy.Rational(dimension[base_unit]) / dimension[target_unit]
scale_non_decimal = _factor_non_decimal(sympy.denom(scale))
entropy = 9 if is_extrapolation else 7
base_value = number.non_integer_decimal(entropy, signed=False)
base_value = display.Decimal(base_value.value * scale_non_decimal)
target_value = display.Decimal(base_value.value * scale)
return base_value, base_unit, target_value, target_unit
示例12: _conversion_fraction
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def _conversion_fraction(context, is_train):
"""E.g., "How many grams are in three quarters of a kg?"."""
dimension = random.choice(DIMENSIONS)
# Limit probability of giving zero answer.
allow_zero = random.random() < 0.2
# Repeat until we find a pair with an integral answer. (Avoids ambiguity with
# decimals.)
while True:
base_unit, target_unit = random.sample(list(dimension.keys()), 2)
base_value = number.non_integer_rational(2, signed=False)
if train_test_split.is_train(base_value) != is_train:
continue
answer = (base_value * sympy.Rational(dimension[base_unit])
/ sympy.Rational(dimension[target_unit]))
if (abs(answer) <= 100000
and sympy.denom(answer) == 1
and (allow_zero or answer != 0)):
break
template = random.choice([
'How many {target_name} are there in {base_value} of a {base_name}?',
'What is {base_value} of a {base_name} in {target_name}?',
])
if sympy.denom(base_value) > 20 or random.choice([False, True]):
base_value_string = base_value # Will be represented as e.g., 2/3.
else:
base_value_string = display.StringNumber(base_value) # e.g., two thirds
question = example.question(
context, template,
base_name=base_unit.name,
base_value=base_value_string,
target_name=pluralize(target_unit.name))
return example.Problem(question=question, answer=answer)
示例13: _value_sampler
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def _value_sampler(value):
"""Returns sampler (e.g., number.integer) appropriate for `value`."""
if value == _INT or number.is_integer(value):
return functools.partial(number.integer, signed=True)
if value == _INT_OR_RATIONAL or isinstance(value, sympy.Rational):
return functools.partial(number.integer_or_rational, signed=True)
if isinstance(value, display.Decimal):
return functools.partial(number.integer_or_decimal, signed=True)
raise ValueError('Unrecognized value {} of type {}'
.format(value, type(value)))
示例14: _div_op
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def _div_op(value, sample_args, rationals_allowed):
"""Returns sampled args for `ops.Div`."""
assert rationals_allowed # should be True if this function gets invoked
entropy, sample_args = sample_args.peel()
numer = sympy.numer(value)
denom = sympy.denom(value)
if sample_args.count == 1:
mult = number.integer(entropy, signed=True, min_abs=1)
op_args = [numer * mult, denom * mult]
elif sample_args.count == 2:
if numer == 0 or random.choice([False, True]):
x = number.integer(entropy, signed=True, min_abs=1, coprime_to=denom)
op_args = [sympy.Rational(x * numer, denom), x]
else:
x = number.integer(entropy, signed=True, min_abs=1, coprime_to=numer)
op_args = [x, sympy.Rational(x * denom, numer)]
else:
assert sample_args.count >= 3
p2, p1 = _split_factors(numer)
q1, q2 = _split_factors(denom)
entropy -= _entropy_of_factor_split(numer) + _entropy_of_factor_split(denom)
entropy_r = random.uniform(0, entropy)
entropy_s = entropy - entropy_r
r = number.integer(entropy_r, signed=True, min_abs=1, coprime_to=q1*p2)
s = number.integer(entropy_s, signed=False, min_abs=1, coprime_to=p1*q2)
op_args = [sympy.Rational(r*p1, s*q1), sympy.Rational(r*q2, s*p2)]
return ops.Div, op_args, sample_args
示例15: non_integer_rational
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Rational [as 别名]
def non_integer_rational(entropy, signed):
"""Similar args to `integer`. Entropy split between denom and numer."""
numer_entropy = random.uniform(0, entropy)
denom_entropy = entropy - numer_entropy
numer = integer(numer_entropy, signed, min_abs=1)
denom = integer(denom_entropy, False, min_abs=2, coprime_to=numer)
return sympy.Rational(numer, denom)