当前位置: 首页>>代码示例>>Python>>正文


Python sympy.Derivative方法代码示例

本文整理汇总了Python中sympy.Derivative方法的典型用法代码示例。如果您正苦于以下问题:Python sympy.Derivative方法的具体用法?Python sympy.Derivative怎么用?Python sympy.Derivative使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sympy的用法示例。


在下文中一共展示了sympy.Derivative方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_oprint

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def test_oprint():
    s = io.StringIO()
    with contextlib.redirect_stdout(s):
        oprint(
            'int', 1,
            'dictionary', dict(a=1, b=2),
            'set', {1},
            'tuple', (1, 2),
            'list', [1, 2, 3],
            'str', 'a quote: "',
            'deriv', Derivative(Symbol('x'), Symbol('x'), evaluate=False),
        )

    if has_ordered_dictionaries:
        assert s.getvalue() == textwrap.dedent("""\
            int        = 1
            dictionary = {a: 1, b: 2}
            set        = {1}
            tuple      = (1, 2)
            list       = [1, 2, 3]
            str        = a quote: "
            deriv      = D{x}x
            """) 
开发者ID:pygae,项目名称:galgebra,代码行数:25,代码来源:test_printer.py

示例2: variables

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def variables(self):
        """
        Returns the variables with which the function in the specified
        arbitrary expression is evaluated

        Examples
        ========

        >>> from sympsi.operator import DifferentialOperator
        >>> from sympy import Symbol, Function, Derivative
        >>> x = Symbol('x')
        >>> f = Function('f')
        >>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x))
        >>> d.variables
        (x,)
        >>> y = Symbol('y')
        >>> d = DifferentialOperator(Derivative(f(x, y), x) +
        ...                          Derivative(f(x, y), y), f(x, y))
        >>> d.variables
        (x, y)
        """

        return self.args[-1].args 
开发者ID:sympsi,项目名称:sympsi,代码行数:25,代码来源:operator.py

示例3: function

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def function(self):
        """
        Returns the function which is to be replaced with the Wavefunction

        Examples
        ========

        >>> from sympsi.operator import DifferentialOperator
        >>> from sympy import Function, Symbol, Derivative
        >>> x = Symbol('x')
        >>> f = Function('f')
        >>> d = DifferentialOperator(Derivative(f(x), x), f(x))
        >>> d.function
        f(x)
        >>> y = Symbol('y')
        >>> d = DifferentialOperator(Derivative(f(x, y), x) +
        ...                          Derivative(f(x, y), y), f(x, y))
        >>> d.function
        f(x, y)
        """

        return self.args[-1] 
开发者ID:sympsi,项目名称:sympsi,代码行数:24,代码来源:operator.py

示例4: expr

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def expr(self):
        """
        Returns the arbitary expression which is to have the Wavefunction
        substituted into it

        Examples
        ========

        >>> from sympsi.operator import DifferentialOperator
        >>> from sympy import Function, Symbol, Derivative
        >>> x = Symbol('x')
        >>> f = Function('f')
        >>> d = DifferentialOperator(Derivative(f(x), x), f(x))
        >>> d.expr
        Derivative(f(x), x)
        >>> y = Symbol('y')
        >>> d = DifferentialOperator(Derivative(f(x, y), x) +
        ...                          Derivative(f(x, y), y), f(x, y))
        >>> d.expr
        Derivative(f(x, y), x) + Derivative(f(x, y), y)
        """

        return self.args[0] 
开发者ID:sympsi,项目名称:sympsi,代码行数:25,代码来源:operator.py

示例5: __new__

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def __new__(cls, expr, *dims, **kwargs):
        if type(expr) == sympy.Derivative:
            raise ValueError("Cannot nest sympy.Derivative with devito.Derivative")
        if not isinstance(expr, Differentiable):
            raise ValueError("`expr` must be a Differentiable object")

        new_dims, orders, fd_o, var_count = cls._process_kwargs(expr, *dims, **kwargs)

        # Construct the actual Derivative object
        obj = Differentiable.__new__(cls, expr, *var_count)
        obj._dims = tuple(OrderedDict.fromkeys(new_dims))

        skip = kwargs.get('preprocessed', False) or obj.ndims == 1

        obj._fd_order = fd_o if skip else DimensionTuple(*fd_o, getters=obj._dims)
        obj._deriv_order = orders if skip else DimensionTuple(*orders, getters=obj._dims)
        obj._side = kwargs.get("side")
        obj._transpose = kwargs.get("transpose", direct)
        obj._subs = as_tuple(kwargs.get("subs"))
        obj._x0 = kwargs.get('x0', None)
        return obj 
开发者ID:devitocodes,项目名称:devito,代码行数:23,代码来源:derivative.py

示例6: __call__

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def __call__(self, x0=None, fd_order=None, side=None):
        if self.ndims == 1:
            _fd_order = fd_order or self._fd_order
            _side = side or self._side
            new_x0 = {self.dims[0]: x0} if x0 is not None else self.x0
            return self._new_from_self(fd_order=_fd_order, side=_side, x0=new_x0)

        if side is not None:
            raise TypeError("Side only supported for first order single"
                            "Dimension derivative such as `.dxl` or .dx(side=left)")
        # Cross derivative
        _x0 = self._x0 or {}
        _fd_order = dict(self.fd_order._getters)
        try:
            _fd_order.update(**(fd_order or {}))
            _fd_order = tuple(_fd_order.values())
            _fd_order = DimensionTuple(*_fd_order, getters=self.dims)
            _x0.update(x0)
        except AttributeError:
            raise TypeError("Multi-dimensional Derivative, input expected as a dict")

        return self._new_from_self(fd_order=_fd_order, x0=_x0) 
开发者ID:devitocodes,项目名称:devito,代码行数:24,代码来源:derivative.py

示例7: find_functions

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def find_functions(expr):
    f_lst = []
    for f in list(expr.atoms(Function)):
        if str(f) not in GaPrinter.function_names:
            f_lst.append(f)
    f_lst += list(expr.atoms(Derivative))
    return f_lst 
开发者ID:pygae,项目名称:galgebra,代码行数:9,代码来源:printer.py

示例8: __init__

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def __init__(self, base=None, fct=None, deriv=None, on=True, debug=False):
        if on:
            OS = 'unix'
            if 'win' in sys.platform and 'darwin' not in sys.platform:
                OS = 'win'

            if base is None:
                Eprint.base = Eprint.ColorCode[Eprint.defaults[(OS, 'base')]]
            else:
                Eprint.base = Eprint.ColorCode[base]
            if fct is None:
                Eprint.fct = Eprint.ColorCode[Eprint.defaults[(OS, 'fct')]]
            else:
                Eprint.fct = Eprint.ColorCode[fct]
            if deriv is None:
                Eprint.deriv = Eprint.ColorCode[Eprint.defaults[(OS, 'deriv')]]
            else:
                Eprint.deriv = Eprint.ColorCode[deriv]
            Eprint.normal = '\033[0m'

            if debug:
                print('Enhanced Printing is on:')
                print('Base/Blade color is ' + Eprint.InvColorCode[Eprint.base])
                print('Function color is ' + Eprint.InvColorCode[Eprint.fct])
                print('Derivative color is ' + Eprint.InvColorCode[Eprint.deriv] + '\n')

            Eprint.base = '\033[' + Eprint.base + 'm'
            Eprint.fct = '\033[' + Eprint.fct + 'm'
            Eprint.deriv = '\033[' + Eprint.deriv + 'm' 
开发者ID:pygae,项目名称:galgebra,代码行数:31,代码来源:printer.py

示例9: _eval_derivative

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def _eval_derivative(self, symbol):
        new_expr = Derivative(self.expr, symbol)
        return DifferentialOperator(new_expr, self.args[-1])

    #-------------------------------------------------------------------------
    # Printing
    #------------------------------------------------------------------------- 
开发者ID:sympsi,项目名称:sympsi,代码行数:9,代码来源:operator.py

示例10: diff

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def diff(self, *symbols, **assumptions):
        """
        Like ``sympy.diff``, but return a ``devito.Derivative`` instead of a
        ``sympy.Derivative``.
        """
        from devito.finite_differences.derivative import Derivative
        return Derivative(self, *symbols, **assumptions) 
开发者ID:devitocodes,项目名称:devito,代码行数:9,代码来源:differentiable.py

示例11: _new_from_self

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def _new_from_self(self, **kwargs):
        _kwargs = {'deriv_order': self.deriv_order, 'fd_order': self.fd_order,
                   'side': self.side, 'transpose': self.transpose, 'subs': self._subs,
                   'x0': self.x0, 'preprocessed': True}
        expr = kwargs.pop('expr', self.expr)
        _kwargs.update(**kwargs)
        return Derivative(expr, *self.dims, **_kwargs) 
开发者ID:devitocodes,项目名称:devito,代码行数:9,代码来源:derivative.py

示例12: _eval_fd

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def _eval_fd(self, expr):
        """
        Evaluate finite difference approximation of the Derivative.
        Evaluation is carried out via the following four steps:
        - 1: Evaluate derivatives within the expression. For example given
        `f.dx * g`, `f.dx` will be evaluated first.
        - 2: Evaluate the finite difference for the (new) expression.
        - 3: Evaluate remaining terms (as `g` may need to be evaluated
        at a different point).
        - 4: Apply substitutions.

        """
        # Step 1: Evaluate derivatives within expression
        expr = getattr(expr, '_eval_deriv', expr)

        # Step 2: Evaluate FD of the new expression
        if self.side is not None and self.deriv_order == 1:
            res = first_derivative(expr, self.dims[0], self.fd_order,
                                   side=self.side, matvec=self.transpose,
                                   x0=self.x0)
        elif len(self.dims) > 1:
            res = cross_derivative(expr, self.dims, self.fd_order, self.deriv_order,
                                   matvec=self.transpose, x0=self.x0)
        else:
            res = generic_derivative(expr, *self.dims, self.fd_order, self.deriv_order,
                                     matvec=self.transpose, x0=self.x0)

        # Step 3: Evaluate remaining part of expression
        res = res.evaluate

        # Step 4: Apply substitution
        for e in self._subs:
            res = res.xreplace(e)
        return res 
开发者ID:devitocodes,项目名称:devito,代码行数:36,代码来源:derivative.py

示例13: ordered_symbols

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def ordered_symbols(self):
        """
        :return: list of all symbols in this model, topologically sorted so they
            can be evaluated in the correct order.

            Within each group of equal priority symbols, we sort by the order of
            the derivative.
        """
        key_func = lambda s: [isinstance(s, sympy.Derivative),
                           isinstance(s, sympy.Derivative) and s.derivative_count]
        symbols = []
        for symbol in toposort(self.connectivity_mapping):
            symbols.extend(sorted(symbol, key=key_func))

        return symbols 
开发者ID:tBuLi,项目名称:symfit,代码行数:17,代码来源:models.py

示例14: _partial_diff

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def _partial_diff(var, *params):
    """
    Sympy does not handle repeated partial derivation correctly, e.g.
    D(D(y, a), a) = D(y, a, a) but D(D(y, a), b) = 0.
    Use this function instead to prevent evaluation to zero.
    """
    if isinstance(var, sympy.Derivative):
        return sympy.Derivative(var.expr, *(var.variables + params))
    else:
        return D(var, *params) 
开发者ID:tBuLi,项目名称:symfit,代码行数:12,代码来源:models.py

示例15: _partial_subs

# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import Derivative [as 别名]
def _partial_subs(func, func2vars):
    """
    Partial-bug proof substitution. Works by making the substitutions on
    the expression inside the derivative first, and then rebuilding the
    derivative safely without evaluating it using `_partial_diff`.
    """
    if isinstance(func, sympy.Derivative):
        new_func = func.expr.xreplace(func2vars)
        new_variables = tuple(var.xreplace(func2vars)
                              for var in func.variables)
        return _partial_diff(new_func, *new_variables)
    else:
        return func.xreplace(func2vars) 
开发者ID:tBuLi,项目名称:symfit,代码行数:15,代码来源:models.py


注:本文中的sympy.Derivative方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。