本文整理汇总了Python中sympy.And方法的典型用法代码示例。如果您正苦于以下问题:Python sympy.And方法的具体用法?Python sympy.And怎么用?Python sympy.And使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sympy
的用法示例。
在下文中一共展示了sympy.And方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_PiecewisePoly__sympy
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def test_PiecewisePoly__sympy():
import sympy as sp
Poly = mk_Poly('T')
p1 = Poly([0, 1, 0.1])
p2 = Poly([0, 3, -.1])
TPiecewisePoly = mk_PiecewisePoly('temperature')
tpwp = TPiecewisePoly([2, 2, 0, 10, 2, 10, 20, 0, 1, 0.1, 0, 3, -.1])
x = sp.Symbol('x')
res = tpwp.eval_poly({'temperature': x}, backend=sp)
assert isinstance(res, sp.Piecewise)
assert res.args[0][0] == 1 + 0.1*x
assert res.args[0][1] == sp.And(0 <= x, x <= 10)
assert res.args[1][0] == 3 - 0.1*x
assert res.args[1][1] == sp.And(10 <= x, x <= 20)
with pytest.raises(ValueError):
tpwp.from_polynomials([(0, 10), (10, 20)], [p1, p2])
示例2: guard
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def guard(clusters):
"""
Split Clusters containing conditional expressions into separate Clusters.
"""
processed = []
for c in clusters:
# Group together consecutive expressions with same ConditionalDimensions
for cds, g in groupby(c.exprs, key=lambda e: e.conditionals):
if not cds:
processed.append(c.rebuild(exprs=list(g)))
continue
# Create a guarded Cluster
guards = {}
for cd in cds:
condition = guards.setdefault(cd.parent, [])
if cd.condition is None:
condition.append(CondEq(cd.parent % cd.factor, 0))
else:
condition.append(lower_exprs(cd.condition))
guards = {k: sympy.And(*v, evaluate=False) for k, v in guards.items()}
processed.append(c.rebuild(exprs=list(g), guards=guards))
return ClusterGroup(processed)
示例3: test_logic
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def test_logic():
x = true
y = false
x1 = sympy.true
y1 = sympy.false
assert And(x, y) == And(x1, y1)
assert And(x1, y) == And(x1, y1)
assert And(x, y)._sympy_() == sympy.And(x1, y1)
assert sympify(sympy.And(x1, y1)) == And(x, y)
assert Or(x, y) == Or(x1, y1)
assert Or(x1, y) == Or(x1, y1)
assert Or(x, y)._sympy_() == sympy.Or(x1, y1)
assert sympify(sympy.Or(x1, y1)) == Or(x, y)
assert Not(x) == Not(x1)
assert Not(x1) == Not(x1)
assert Not(x)._sympy_() == sympy.Not(x1)
assert sympify(sympy.Not(x1)) == Not(x)
assert Xor(x, y) == Xor(x1, y1)
assert Xor(x1, y) == Xor(x1, y1)
assert Xor(x, y)._sympy_() == sympy.Xor(x1, y1)
assert sympify(sympy.Xor(x1, y1)) == Xor(x, y)
x = Symbol("x")
x1 = sympy.Symbol("x")
assert Piecewise((x, x < 1), (0, True)) == Piecewise((x1, x1 < 1), (0, True))
assert Piecewise((x, x1 < 1), (0, True)) == Piecewise((x1, x1 < 1), (0, True))
assert Piecewise((x, x < 1), (0, True))._sympy_() == sympy.Piecewise((x1, x1 < 1), (0, True))
assert sympify(sympy.Piecewise((x1, x1 < 1), (0, True))) == Piecewise((x, x < 1), (0, True))
assert Contains(x, Interval(1, 1)) == Contains(x1, Interval(1, 1))
assert Contains(x, Interval(1, 1))._sympy_() == sympy.Contains(x1, Interval(1, 1))
assert sympify(sympy.Contains(x1, Interval(1, 1))) == Contains(x, Interval(1, 1))
示例4: __and__
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def __and__(self, other):
assert isinstance(other, Node), "Both arguments must be Node instances"
return And(self, other)
示例5: node_to_symbol
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def node_to_symbol(words_to_symbols, node):
if _is_word(node):
return words_to_symbols[node]
elif _is_operation(node):
if isinstance(node, Or):
return sympy.Or(*[node_to_symbol(words_to_symbols, i) for i in node.nodes])
elif isinstance(node, And):
return sympy.And(*[node_to_symbol(words_to_symbols, i) for i in node.nodes])
示例6: test_PiecewiseTPolyMassAction__sympy
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def test_PiecewiseTPolyMassAction__sympy():
import sympy as sp
tp1 = TPoly([10, 0.1])
tp2 = ShiftedTPoly([273.15, 37.315, -0.1])
pwp = MassAction(TPiecewise([0, tp1, 273.15, tp2, 373.15]))
T = sp.Symbol('T')
r = Reaction({'A': 2, 'B': 1}, {'C': 1}, inact_reac={'B': 1})
res1 = pwp({'A': 11, 'B': 13, 'temperature': T}, backend=sp, reaction=r)
ref1 = 11**2 * 13 * sp.Piecewise(
(10+0.1*T, sp.And(0 <= T, T <= 273.15)),
(37.315 - 0.1*(T-273.15), sp.And(273.15 <= T, T <= 373.15)),
(sp.Symbol('NAN'), True)
)
assert res1 == ref1
示例7: test_create_Piecewise_Poly__sympy
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def test_create_Piecewise_Poly__sympy():
import sympy as sp
Poly = create_Poly('Tmpr')
p1 = Poly([1, 0.1])
p2 = Poly([3, -.1])
TPw = create_Piecewise('Tmpr')
pw = TPw([0, p1, 10, p2, 20])
x = sp.Symbol('x')
res = pw({'Tmpr': x}, backend=sp)
assert isinstance(res, sp.Piecewise)
assert res.args[0][0] == 1 + 0.1*x
assert res.args[0][1] == sp.And(0 <= x, x <= 10)
assert res.args[1][0] == 3 - 0.1*x
assert res.args[1][1] == sp.And(10 <= x, x <= 20)
示例8: test_create_Piecewise__nan_fallback__sympy
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def test_create_Piecewise__nan_fallback__sympy():
import sympy as sp
TPw = create_Piecewise('Tmpr', nan_fallback=True)
pw = TPw([0, 42, 10, 43, 20])
x = sp.Symbol('x')
res = pw({'Tmpr': x}, backend=sp)
assert isinstance(res, sp.Piecewise)
assert res.args[0][0] == 42
assert res.args[0][1] == sp.And(0 <= x, x <= 10)
assert res.args[1][0] == 43
assert res.args[1][1] == sp.And(10 <= x, x <= 20)
assert res.args[2][0].name.lower() == 'nan'
assert res.args[2][1] == True # noqa
示例9: _interpolation_indices
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def _interpolation_indices(self, variables, offset=0, field_offset=0):
"""
Generate interpolation indices for the DiscreteFunctions in ``variables``.
"""
index_matrix, points = self.sfunction._index_matrix(offset)
idx_subs = []
for i, idx in enumerate(index_matrix):
# Introduce ConditionalDimension so that we don't go OOB
mapper = {}
for j, d in zip(idx, self.grid.dimensions):
p = points[j]
lb = sympy.And(p >= d.symbolic_min - self.sfunction._radius,
evaluate=False)
ub = sympy.And(p <= d.symbolic_max + self.sfunction._radius,
evaluate=False)
condition = sympy.And(lb, ub, evaluate=False)
mapper[d] = ConditionalDimension(p.name, self.sfunction._sparse_dim,
condition=condition, indirect=True)
# Track Indexed substitutions
idx_subs.append(mapper)
# Temporaries for the indirection dimensions
temps = [Eq(v, k, implicit_dims=self.sfunction.dimensions)
for k, v in points.items()]
# Temporaries for the coefficients
temps.extend([Eq(p, c, implicit_dims=self.sfunction.dimensions)
for p, c in zip(self.sfunction._point_symbols,
self.sfunction._coordinate_bases(field_offset))])
return idx_subs, temps
示例10: guard
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def guard(self, expr=None, offset=0):
"""
Generate guarded expressions, that is expressions that are evaluated
by an Operator only if certain conditions are met. The introduced
condition, here, is that all grid points in the support of a sparse
value must fall within the grid domain (i.e., *not* on the halo).
Parameters
----------
expr : expr-like, optional
Input expression, from which the guarded expression is derived.
If not specified, defaults to ``self``.
offset : int, optional
Relax the guard condition by introducing a tolerance offset.
"""
_, points = self._index_matrix(offset)
# Guard through ConditionalDimension
conditions = {}
for d, idx in zip(self.grid.dimensions, self._coordinate_indices):
p = points[idx]
lb = sympy.And(p >= d.symbolic_min - offset, evaluate=False)
ub = sympy.And(p <= d.symbolic_max + offset, evaluate=False)
conditions[p] = sympy.And(lb, ub, evaluate=False)
condition = sympy.And(*conditions.values(), evaluate=False)
cd = ConditionalDimension("%s_g" % self._sparse_dim, self._sparse_dim,
condition=condition)
if expr is None:
out = self.indexify().xreplace({self._sparse_dim: cd})
else:
functions = {f for f in retrieve_function_carriers(expr)
if f.is_SparseFunction}
out = indexify(expr).xreplace({f._sparse_dim: cd for f in functions})
# Temporaries for the indirection dimensions
temps = [Eq(v, k, implicit_dims=self.dimensions)
for k, v in points.items() if v in conditions]
return out, temps
示例11: simplify
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def simplify(genome, symbolic_function_map=None):
"""
Compile the primitive tree into a (possibly simplified) symbolic expression.
:param genome: :class:`~geppy.core.entity.KExpression`, :class:`~geppy.core.entity.Gene`, or
:class:`~geppy.core.entity.Chromosome`, the genotype of an individual
:param symbolic_function_map: dict, maps each function name in the primitive set to a symbolic version
:return: a (simplified) symbol expression
For example, *add(sub(3, 3), x)* may be simplified to *x*. This :func:`simplify` function can be used to
postprocess the best individual obtained in GEP for a simplified representation. Some Python functions like
:func:`operator.add` can be used directly in *sympy*. However, there are also functions that have their own
symbolic versions to be used in *sympy*, like the :func:`operator.and_`, which should be replaced by
:func:`sympy.And`. In such a case, we may provide a map
``symbolic_function_map={operator.and_.__name__, sympy.And}`` supposing the function primitive encapsulating
:func:`operator.and_` uses its default name.
Such simplification doesn't affect GEP at all. It should be used as a postprocessing step to simplify the final
solution evolved by GEP.
.. note::
If the *symbolic_function_map* argument remains as the default value ``None``, then a default map
:data:`DEFAULT_SYMBOLIC_FUNCTION_MAP` is used, which contains common
*name-to-symbolic function* mappings, including the arithmetic operators and Boolean logic operators..
.. note::
This function depends on the :mod:`sympy` module. You can find it `here <http://www.sympy.org/en/index.html>`_.
"""
if symbolic_function_map is None:
symbolic_function_map = DEFAULT_SYMBOLIC_FUNCTION_MAP
if isinstance(genome, KExpression):
return _simplify_kexpression(genome, symbolic_function_map)
elif isinstance(genome, Gene):
return _simplify_kexpression(genome.kexpression, symbolic_function_map)
elif isinstance(genome, Chromosome):
if len(genome) == 1:
return _simplify_kexpression(genome[0].kexpression, symbolic_function_map)
else: # multigenic chromosome
simplified_exprs = [_simplify_kexpression(
g.kexpression, symbolic_function_map) for g in genome]
# combine these sub-expressions into a single one with the linking function
try:
linker = symbolic_function_map[genome.linker.__name__]
except:
linker = genome.linker
return sp.simplify(linker(*simplified_exprs))
else:
raise TypeError('Only an argument of type KExpression, Gene, and Chromosome is acceptable. The provided '
'genome type is {}.'.format(type(genome)))
示例12: test_no_index_sparse
# 需要导入模块: import sympy [as 别名]
# 或者: from sympy import And [as 别名]
def test_no_index_sparse(self):
"""Test behaviour when the ConditionalDimension is used as a symbol in
an expression over sparse data objects."""
grid = Grid(shape=(4, 4), extent=(3.0, 3.0))
time = grid.time_dim
f = TimeFunction(name='f', grid=grid, save=1)
f.data[:] = 0.
coordinates = [(0.5, 0.5), (0.5, 2.5), (2.5, 0.5), (2.5, 2.5)]
sf = SparseFunction(name='sf', grid=grid, npoint=4, coordinates=coordinates)
sf.data[:] = 1.
sd = sf.dimensions[sf._sparse_position]
# We want to write to `f` through `sf` so that we obtain the
# following 4x4 grid (the '*' show the position of the sparse points)
# We do that by emulating an injection
#
# 0 --- 0 --- 0 --- 0
# | * | | * |
# 0 --- 1 --- 1 --- 0
# | | | |
# 0 --- 1 --- 1 --- 0
# | * | | * |
# 0 --- 0 --- 0 --- 0
radius = 1
indices = [(i, i+radius) for i in sf._coordinate_indices]
bounds = [i.symbolic_size - radius for i in grid.dimensions]
eqs = []
for e, i in enumerate(product(*indices)):
args = [j > 0 for j in i]
args.extend([j < k for j, k in zip(i, bounds)])
condition = And(*args, evaluate=False)
cd = ConditionalDimension('sfc%d' % e, parent=sd, condition=condition)
index = [time] + list(i)
eqs.append(Eq(f[index], f[index] + sf[cd]))
op = Operator(eqs)
op.apply(time=0)
assert np.all(f.data[0, 1:-1, 1:-1] == 1.)
assert np.all(f.data[0, 0] == 0.)
assert np.all(f.data[0, -1] == 0.)
assert np.all(f.data[0, :, 0] == 0.)
assert np.all(f.data[0, :, -1] == 0.)