本文整理汇总了Python中streamlit.subheader方法的典型用法代码示例。如果您正苦于以下问题:Python streamlit.subheader方法的具体用法?Python streamlit.subheader怎么用?Python streamlit.subheader使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类streamlit
的用法示例。
在下文中一共展示了streamlit.subheader方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: draw_image_with_boxes
# 需要导入模块: import streamlit [as 别名]
# 或者: from streamlit import subheader [as 别名]
def draw_image_with_boxes(image, boxes, header, description):
# Superpose the semi-transparent object detection boxes. # Colors for the boxes
LABEL_COLORS = {
"car": [255, 0, 0],
"pedestrian": [0, 255, 0],
"truck": [0, 0, 255],
"trafficLight": [255, 255, 0],
"biker": [255, 0, 255],
}
image_with_boxes = image.astype(np.float64)
for _, (xmin, ymin, xmax, ymax, label) in boxes.iterrows():
image_with_boxes[int(ymin):int(ymax),int(xmin):int(xmax),:] += LABEL_COLORS[label]
image_with_boxes[int(ymin):int(ymax),int(xmin):int(xmax),:] /= 2
# Draw the header and image.
st.subheader(header)
st.markdown(description)
st.image(image_with_boxes.astype(np.uint8), use_column_width=True)
# Download a single file and make its content available as a string.
示例2: st_lime_explanation
# 需要导入模块: import streamlit [as 别名]
# 或者: from streamlit import subheader [as 别名]
def st_lime_explanation(
text: str,
predict_func: Callable[[List[str]], np.ndarray],
unique_labels: List[str],
n_samples: int,
position_dependent: bool = True,
):
# TODO just use ELI5's built-in visualization when streamlit supports it:
# https://github.com/streamlit/streamlit/issues/779
with st.spinner("Generating LIME explanations..."):
te = TextExplainer(
random_state=1, n_samples=n_samples, position_dependent=position_dependent
)
te.fit(text, predict_func)
st.json(te.metrics_)
explanation = te.explain_prediction()
explanation_df = eli5.format_as_dataframe(explanation)
for target_ndx, target in enumerate(
sorted(explanation.targets, key=lambda t: -t.proba)
):
target_explanation_df = explanation_df[
explanation_df["target"] == target_ndx
].copy()
target_explanation_df["contribution"] = (
target_explanation_df["weight"] * target_explanation_df["value"]
)
target_explanation_df["abs_contribution"] = abs(
target_explanation_df["contribution"]
)
target_explanation_df = (
target_explanation_df.drop("target", axis=1)
.sort_values(by="abs_contribution", ascending=False)
.reset_index(drop=True)
)
st.subheader(
f"Target: {unique_labels[target_ndx]} (probability {target.proba:.4f}, score {target.score:.4f})"
)
st.dataframe(target_explanation_df)
示例3: show_example_documents
# 需要导入模块: import streamlit [as 别名]
# 或者: from streamlit import subheader [as 别名]
def show_example_documents(
texts: List[str],
labels: Union[List[str], List[List[str]]],
filter_label: Optional[str],
example_truncate_len: int,
example_num_docs: int,
):
st.header("Example Documents")
# If we're filtered to a specific label,
# just show it once at the top -- otherwise, show the label
# with each example
if filter_label is not None:
st.subheader(f"Label: {filter_label}")
example_labels = None
else:
example_labels = labels
example_indices = safe_sample(range(len(texts)), example_num_docs)
_show_example_documents(
[texts[i] for i in example_indices],
[example_labels[i] for i in example_indices]
if example_labels is not None
else None,
example_truncate_len,
)