本文整理汇总了Python中steppy.base.Step方法的典型用法代码示例。如果您正苦于以下问题:Python base.Step方法的具体用法?Python base.Step怎么用?Python base.Step使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类steppy.base
的用法示例。
在下文中一共展示了base.Step方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: emptiness_preprocessing_train
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def emptiness_preprocessing_train(config, model_name='network', suffix=''):
reader_train = Step(name='xy_train{}'.format(suffix),
transformer=loaders.XYSplit(train_mode=True, **config.xy_splitter[model_name]),
input_data=['input'],
adapter=Adapter({'meta': E('input', 'meta')}),
experiment_directory=config.execution.experiment_dir)
reader_inference = Step(name='xy_inference{}'.format(suffix),
transformer=loaders.XYSplit(train_mode=True, **config.xy_splitter[model_name]),
input_data=['callback_input'],
adapter=Adapter({'meta': E('callback_input', 'meta_valid')}),
experiment_directory=config.execution.experiment_dir)
loader = Step(name='loader{}'.format(suffix),
transformer=loaders.EmptinessLoader(train_mode=True, **config.loaders.resize),
input_steps=[reader_train, reader_inference],
adapter=Adapter({'X': E(reader_train.name, 'X'),
'y': E(reader_train.name, 'y'),
'X_valid': E(reader_inference.name, 'X'),
'y_valid': E(reader_inference.name, 'y'),
}),
experiment_directory=config.execution.experiment_dir)
return loader
示例2: emptiness_preprocessing_inference
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def emptiness_preprocessing_inference(config, model_name='network', suffix=''):
reader_inference = Step(name='xy_inference{}'.format(suffix),
transformer=loaders.XYSplit(train_mode=False, **config.xy_splitter[model_name]),
input_data=['input'],
adapter=Adapter({'meta': E('input', 'meta')}),
experiment_directory=config.execution.experiment_dir)
loader = Step(name='loader{}'.format(suffix),
transformer=loaders.EmptinessLoader(train_mode=False, **config.loaders.resize),
input_steps=[reader_inference],
adapter=Adapter({'X': E(reader_inference.name, 'X'),
'y': E(reader_inference.name, 'y'),
}),
experiment_directory=config.execution.experiment_dir,
cache_output=True)
return loader
示例3: stacking_preprocessing_train
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def stacking_preprocessing_train(config, model_name='network', suffix=''):
reader_train = Step(name='xy_train{}'.format(suffix),
transformer=loaders.XYSplit(train_mode=True, **config.xy_splitter[model_name]),
input_data=['input'],
adapter=Adapter({'meta': E('input', 'meta')}),
experiment_directory=config.execution.experiment_dir)
reader_inference = Step(name='xy_inference{}'.format(suffix),
transformer=loaders.XYSplit(train_mode=True, **config.xy_splitter[model_name]),
input_data=['callback_input'],
adapter=Adapter({'meta': E('callback_input', 'meta_valid')}),
experiment_directory=config.execution.experiment_dir)
loader = Step(name='loader{}'.format(suffix),
transformer=loaders.ImageSegmentationLoaderStacking(train_mode=True, **config.loaders.stacking),
input_steps=[reader_train, reader_inference],
adapter=Adapter({'X': E(reader_train.name, 'X'),
'y': E(reader_train.name, 'y'),
'X_valid': E(reader_inference.name, 'X'),
'y_valid': E(reader_inference.name, 'y'),
}),
experiment_directory=config.execution.experiment_dir)
return loader
示例4: stacking_preprocessing_inference
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def stacking_preprocessing_inference(config, model_name='network', suffix=''):
reader_inference = Step(name='xy_inference{}'.format(suffix),
transformer=loaders.XYSplit(train_mode=False, **config.xy_splitter[model_name]),
input_data=['input'],
adapter=Adapter({'meta': E('input', 'meta')}),
experiment_directory=config.execution.experiment_dir)
loader = Step(name='loader{}'.format(suffix),
transformer=loaders.ImageSegmentationLoaderStacking(train_mode=False, **config.loaders.stacking),
input_steps=[reader_inference],
adapter=Adapter({'X': E(reader_inference.name, 'X'),
'y': E(reader_inference.name, 'y'),
}),
experiment_directory=config.execution.experiment_dir,
cache_output=True)
return loader
示例5: preprocessing_inference
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def preprocessing_inference(config, model_name='network'):
if config.general.loader_mode == 'resize':
loader_config = config.loaders.resize
LOADER = loaders.ImageSegmentationLoaderResize
else:
raise NotImplementedError
reader_inference = Step(name='xy_inference',
transformer=loaders.MetaReader(train_mode=False, **config.meta_reader[model_name]),
input_data=['input'],
adapter=Adapter({'meta': E('input', 'meta')}))
loader = Step(name='loader',
transformer=LOADER(train_mode=False, **loader_config),
input_steps=[reader_inference],
adapter=Adapter({'X': E(reader_inference.name, 'X'),
'y': E(reader_inference.name, 'y'),
}))
return loader
示例6: preprocessing_binary_inference
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def preprocessing_binary_inference(config, model_name, suffix='_binary_model'):
reader_inference = Step(name='xy_inference{}'.format(suffix),
transformer=loaders.MetaReader(train_mode=True, **config.meta_reader[model_name]),
input_data=['input'],
adapter=Adapter({'meta': E('input', 'meta')}))
transformer = OneClassImageClassificatioLoader(
train_mode=True,
loader_params=config.loaders.resize.loader_params,
dataset_params=config.loaders.resize.dataset_params,
augmentation_params=config.loaders.resize.augmentation_params
)
binary_loader = Step(name='loader{}'.format(suffix),
transformer=transformer,
input_steps=[reader_inference],
adapter=Adapter({'X': E(reader_inference.name, 'X'),
}))
return binary_loader
示例7: data_cleaning_v2
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def data_cleaning_v2(config, train_mode, suffix, **kwargs):
cleaned_data = data_cleaning_v1(config, train_mode, suffix, **kwargs)
if train_mode:
cleaned_data, cleaned_data_valid = cleaned_data
impute_missing = Step(name='dummies_missing{}'.format(suffix),
transformer=dc.DummiesMissing(**config.dummies_missing),
input_steps=[cleaned_data],
adapter=Adapter({'X': E(cleaned_data.name, 'numerical_features')}),
experiment_directory=config.pipeline.experiment_directory, **kwargs)
if train_mode:
impute_missing_valid = Step(name='dummies_missing_valid{}'.format(suffix),
transformer=impute_missing,
input_steps=[cleaned_data_valid],
adapter=Adapter({'X': E(cleaned_data_valid.name, 'numerical_features')}),
experiment_directory=config.pipeline.experiment_directory, **kwargs)
return impute_missing, impute_missing_valid
else:
return impute_missing
示例8: row_aggregation_features
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def row_aggregation_features(config, train_mode, suffix, **kwargs):
bucket_nrs = config.row_aggregations.bucket_nrs
row_agg_features = []
for bucket_nr in bucket_nrs:
row_agg_feature = Step(name='row_agg_feature_bucket_nr{}{}'.format(bucket_nr, suffix),
transformer=fe.RowAggregationFeatures(bucket_nr=bucket_nr),
input_data=['input'],
adapter=Adapter({'X': E('input', 'X')}),
experiment_directory=config.pipeline.experiment_directory, **kwargs)
row_agg_features.append(row_agg_feature)
if train_mode:
row_agg_features_valid = []
for bucket_nr, row_agg_feature in zip(bucket_nrs, row_agg_features):
row_agg_feature_valid = Step(name='row_agg_feature_bucket_nr{}_valid{}'.format(bucket_nr, suffix),
transformer=row_agg_feature,
input_data=['input'],
adapter=Adapter({'X': E('input', 'X_valid')}),
experiment_directory=config.pipeline.experiment_directory, **kwargs)
row_agg_features_valid.append(row_agg_feature_valid)
return row_agg_features, row_agg_features_valid
else:
return row_agg_features
示例9: classifier_catboost
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def classifier_catboost(features, config, train_mode, suffix, **kwargs):
model_name = 'catboost{}'.format(suffix)
if train_mode:
features_train, features_valid = features
catboost = Step(name=model_name,
transformer=CatBoost(**config.catboost),
input_data=['main_table'],
input_steps=[features_train, features_valid],
adapter=Adapter({'X': E(features_train.name, 'features'),
'y': E('main_table', 'y'),
'feature_names': E(features_train.name, 'feature_names'),
'categorical_features': E(features_train.name, 'categorical_features'),
'X_valid': E(features_valid.name, 'features'),
'y_valid': E('main_table', 'y_valid'),
}),
experiment_directory=config.pipeline.experiment_directory, **kwargs)
else:
catboost = Step(name=model_name,
transformer=CatBoost(**config.catboost),
input_steps=[features],
adapter=Adapter({'X': E(features.name, 'features')}),
experiment_directory=config.pipeline.experiment_directory, **kwargs)
return catboost
示例10: classifier_xgb
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def classifier_xgb(features, config, train_mode, suffix, **kwargs):
if train_mode:
features_train, features_valid = features
xgboost = Step(name='xgboost{}'.format(suffix),
transformer=XGBoost(**config.xgboost),
input_data=['main_table'],
input_steps=[features_train, features_valid],
adapter=Adapter({'X': E(features_train.name, 'features'),
'y': E('main_table', 'y'),
'feature_names': E(features_train.name, 'feature_names'),
'X_valid': E(features_valid.name, 'features'),
'y_valid': E('main_table', 'y_valid'),
}),
experiment_directory=config.pipeline.experiment_directory,
**kwargs)
else:
xgboost = Step(name='xgboost{}'.format(suffix),
transformer=XGBoost(**config.xgboost),
input_steps=[features],
adapter=Adapter({'X': E(features.name, 'features')}),
experiment_directory=config.pipeline.experiment_directory,
**kwargs)
return xgboost
示例11: visualizer
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def visualizer(model, label_encoder, config):
label_decoder = Step(name='label_decoder',
transformer=GoogleAiLabelDecoder(),
input_steps=[label_encoder, ],
experiment_directory=config.env.cache_dirpath)
decoder = Step(name='decoder',
transformer=DataDecoder(**config.postprocessing.data_decoder),
input_data=['input'],
input_steps=[model, ],
experiment_directory=config.env.cache_dirpath)
visualize = Step(name='visualizer',
transformer=Visualizer(),
input_steps=[label_decoder, decoder],
input_data=['input'],
adapter=Adapter({'images_data': E('input', 'images_data'),
'results': E(decoder.name, 'results'),
'decoder_dict': E(label_decoder.name, 'inverse_mapping')}),
experiment_directory=config.env.cache_dirpath)
return visualize
示例12: postprocessing
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def postprocessing(model, label_encoder, config):
label_decoder = Step(name='label_decoder',
transformer=GoogleAiLabelDecoder(),
input_steps=[label_encoder, ],
experiment_directory=config.env.cache_dirpath)
decoder = Step(name='decoder',
transformer=DataDecoder(**config.postprocessing.data_decoder),
input_data=['input'],
input_steps=[model, ],
experiment_directory=config.env.cache_dirpath)
submission_producer = Step(name='submission_producer',
transformer=PredictionFormatter(),
input_steps=[label_decoder, decoder],
input_data=['input'],
adapter=Adapter({'images_data': E('input', 'images_data'),
'results': E(decoder.name, 'results'),
'decoder_dict': E(label_decoder.name, 'inverse_mapping')}),
experiment_directory=config.env.cache_dirpath)
return submission_producer
示例13: test_inputs_without_conflicting_names_do_not_require_adapter
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def test_inputs_without_conflicting_names_do_not_require_adapter(data):
step = Step(
name='test_inputs_without_conflicting_names_do_not_require_adapter_1',
transformer=IdentityOperation(),
input_data=['input_1']
)
output = step.fit_transform(data)
assert output == data['input_1']
step = Step(
name='test_inputs_without_conflicting_names_do_not_require_adapter_2',
transformer=IdentityOperation(),
input_data=['input_1', 'input_2']
)
output = step.fit_transform(data)
assert output == {**data['input_1'], **data['input_2']}
示例14: test_step_with_adapted_inputs
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def test_step_with_adapted_inputs(data):
step = Step(
name='test_step_wit_adapted_inputs',
transformer=IdentityOperation(),
input_data=['input_1', 'input_3'],
adapter=Adapter({
'img': E('input_3', 'images'),
'fea': E('input_1', 'features'),
'l1': E('input_3', 'labels'),
'l2': E('input_1', 'labels'),
})
)
output = step.fit_transform(data)
expected = {
'img': data['input_3']['images'],
'fea': data['input_1']['features'],
'l1': data['input_3']['labels'],
'l2': data['input_1']['labels'],
}
assert output == expected
示例15: network
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import Step [as 别名]
def network(config, suffix='', train_mode=True):
if train_mode:
preprocessing = emptiness_preprocessing_train(config, model_name='network', suffix=suffix)
else:
preprocessing = emptiness_preprocessing_inference(config, suffix=suffix)
network = utils.FineTuneStep(name='network{}'.format(suffix),
transformer=models.SegmentationModel(**config.model['network']),
input_data=['callback_input'],
input_steps=[preprocessing],
adapter=Adapter({'datagen': E(preprocessing.name, 'datagen'),
'validation_datagen': E(preprocessing.name, 'validation_datagen'),
'meta_valid': E('callback_input', 'meta_valid'),
}),
is_trainable=True,
fine_tuning=config.model.network.training_config.fine_tuning,
experiment_directory=config.execution.experiment_dir)
mask_resize = Step(name='mask_resize{}'.format(suffix),
transformer=utils.make_apply_transformer(partial(postprocessing.resize_emptiness_predictions,
target_size=config.general.original_size),
output_name='resized_images',
apply_on=['images']),
input_steps=[network],
adapter=Adapter({'images': E(network.name, 'mask_prediction'),
}),
experiment_directory=config.execution.experiment_dir)
return mask_resize
# __________ ___ _______ ______ __ __ .___________. __ ______ .__ __.
# | ____\ \ / / | ____| / || | | | | || | / __ \ | \ | |
# | |__ \ V / | |__ | ,----'| | | | `---| |----`| | | | | | | \| |
# | __| > < | __| | | | | | | | | | | | | | | | . ` |
# | |____ / . \ | |____ | `----.| `--' | | | | | | `--' | | |\ |
# |_______/__/ \__\ |_______| \______| \______/ |__| |__| \______/ |__| \__|
#