本文整理汇总了Python中steppy.base.IdentityOperation方法的典型用法代码示例。如果您正苦于以下问题:Python base.IdentityOperation方法的具体用法?Python base.IdentityOperation怎么用?Python base.IdentityOperation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类steppy.base
的用法示例。
在下文中一共展示了base.IdentityOperation方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_inputs_without_conflicting_names_do_not_require_adapter
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def test_inputs_without_conflicting_names_do_not_require_adapter(data):
step = Step(
name='test_inputs_without_conflicting_names_do_not_require_adapter_1',
transformer=IdentityOperation(),
input_data=['input_1']
)
output = step.fit_transform(data)
assert output == data['input_1']
step = Step(
name='test_inputs_without_conflicting_names_do_not_require_adapter_2',
transformer=IdentityOperation(),
input_data=['input_1', 'input_2']
)
output = step.fit_transform(data)
assert output == {**data['input_1'], **data['input_2']}
示例2: test_step_with_adapted_inputs
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def test_step_with_adapted_inputs(data):
step = Step(
name='test_step_wit_adapted_inputs',
transformer=IdentityOperation(),
input_data=['input_1', 'input_3'],
adapter=Adapter({
'img': E('input_3', 'images'),
'fea': E('input_1', 'features'),
'l1': E('input_3', 'labels'),
'l2': E('input_1', 'labels'),
})
)
output = step.fit_transform(data)
expected = {
'img': data['input_3']['images'],
'fea': data['input_1']['features'],
'l1': data['input_3']['labels'],
'l2': data['input_1']['labels'],
}
assert output == expected
示例3: postprocessing_pipeline_simplified
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def postprocessing_pipeline_simplified(cache_dirpath, loader_mode, threshold):
if loader_mode == 'resize_and_pad':
size_adjustment_function = partial(crop_image, target_size=ORIGINAL_SIZE)
elif loader_mode == 'resize' or loader_mode == 'stacking':
size_adjustment_function = partial(resize_image, target_size=ORIGINAL_SIZE)
else:
raise NotImplementedError
mask_resize = Step(name='mask_resize',
transformer=make_apply_transformer(size_adjustment_function,
output_name='resized_images',
apply_on=['images']),
input_data=['network_output'],
adapter=Adapter({'images': E('network_output', 'mask_prediction'),
}),
experiment_directory=cache_dirpath)
binarizer = Step(name='binarizer',
transformer=make_apply_transformer(
partial(binarize, threshold=threshold),
output_name='binarized_images',
apply_on=['images']),
input_steps=[mask_resize],
adapter=Adapter({'images': E(mask_resize.name, 'resized_images'),
}),
experiment_directory=cache_dirpath)
output = Step(name='output',
transformer=IdentityOperation(),
input_steps=[binarizer],
adapter=Adapter({'y_pred': E(binarizer.name, 'binarized_images'),
}),
experiment_directory=cache_dirpath)
return output
示例4: oof_predictions
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def oof_predictions(config, train_mode, suffix, **kwargs):
features = Step(name='oof_predictions{}'.format(suffix),
transformer=IdentityOperation(),
input_data=['oof_predictions'],
adapter=Adapter({'numerical_features': E('oof_predictions', 'X')
}),
experiment_directory=config.pipeline.experiment_directory, **kwargs)
feature_combiner = _join_features(numerical_features=[features],
categorical_features=[],
config=config, train_mode=train_mode, suffix=suffix, **kwargs)
if train_mode:
features_valid = Step(name='oof_predictions{}'.format(suffix),
transformer=IdentityOperation(),
input_data=['oof_predictions'],
adapter=Adapter({'numerical_features': E('oof_predictions', 'X_valid')
}),
experiment_directory=config.pipeline.experiment_directory, **kwargs)
feature_combiner_valid = _join_features(numerical_features=[features_valid],
categorical_features=[],
config=config, train_mode=train_mode, suffix='_valid{}'.format(suffix),
**kwargs)
return feature_combiner, feature_combiner_valid
else:
return feature_combiner
示例5: retinanet
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def retinanet(config, train_mode, visualize=False):
persist_output = False
load_persisted_output = False
loader = preprocessing_generator(config, is_train=train_mode)
retinanet = Step(name='retinanet',
transformer=Retina(**config.retinanet, train_mode=train_mode),
input_steps=[loader],
experiment_directory=config.env.cache_dirpath,
persist_output=persist_output,
is_trainable=True,
load_persisted_output=load_persisted_output)
if train_mode:
return retinanet
if visualize:
return visualizer(retinanet, loader.get_step('label_encoder'), config)
postprocessor = postprocessing(retinanet, loader.get_step('label_encoder'), config)
output = Step(name='output',
transformer=IdentityOperation(),
input_steps=[postprocessor],
adapter=Adapter({'y_pred': E(postprocessor.name, 'submission')}),
experiment_directory=config.env.cache_dirpath,
persist_output=persist_output,
load_persisted_output=load_persisted_output)
return output
示例6: test_inputs_with_conflicting_names_require_adapter
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def test_inputs_with_conflicting_names_require_adapter(data):
step = Step(
name='test_inputs_with_conflicting_names_require_adapter',
transformer=IdentityOperation(),
input_data=['input_1', 'input_3']
)
with pytest.raises(StepError):
step.fit_transform(data)
示例7: network_tta
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def network_tta(config, suffix=''):
if SECOND_LEVEL:
raise NotImplementedError('Second level does not work with TTA')
preprocessing, tta_generator = pipelines.preprocessing_inference_tta(config, model_name='network')
if USE_DEPTH:
Network = models.SegmentationModelWithDepth
else:
Network = models.SegmentationModel
network = Step(name='network{}'.format(suffix),
transformer=Network(**config.model['network']),
input_data=['callback_input'],
input_steps=[preprocessing],
is_trainable=True,
experiment_directory=config.execution.experiment_dir)
tta_aggregator = pipelines.aggregator('tta_aggregator{}'.format(suffix), network,
tta_generator=tta_generator,
experiment_directory=config.execution.experiment_dir,
config=config.tta_aggregator)
prediction_renamed = Step(name='prediction_renamed{}'.format(suffix),
transformer=IdentityOperation(),
input_steps=[tta_aggregator],
adapter=Adapter({'mask_prediction': E(tta_aggregator.name, 'aggregated_prediction')
}),
experiment_directory=config.execution.experiment_dir)
if config.general.loader_mode == 'resize_and_pad':
size_adjustment_function = partial(postprocessing.crop_image, target_size=config.general.original_size)
elif config.general.loader_mode == 'resize' or config.general.loader_mode == 'stacking':
size_adjustment_function = partial(postprocessing.resize_image, target_size=config.general.original_size)
else:
raise NotImplementedError
mask_resize = Step(name='mask_resize{}'.format(suffix),
transformer=utils.make_apply_transformer(size_adjustment_function,
output_name='resized_images',
apply_on=['images']),
input_steps=[prediction_renamed],
adapter=Adapter({'images': E(prediction_renamed.name, 'mask_prediction'),
}),
experiment_directory=config.execution.experiment_dir)
return mask_resize
# __________ ___ _______ ______ __ __ .___________. __ ______ .__ __.
# | ____\ \ / / | ____| / || | | | | || | / __ \ | \ | |
# | |__ \ V / | |__ | ,----'| | | | `---| |----`| | | | | | | \| |
# | __| > < | __| | | | | | | | | | | | | | | | . ` |
# | |____ / . \ | |____ | `----.| `--' | | | | | | `--' | | |\ |
# |_______/__/ \__\ |_______| \______| \______/ |__| |__| \______/ |__| \__|
#
示例8: catboost_preprocessing
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def catboost_preprocessing(features, config, train_mode, suffix, **kwargs):
if train_mode:
features, features_valid = features
fillnaer = Step(name='fillna{}'.format(suffix),
transformer=_fillna(**config.sklearn_preprocessing.fillna),
input_steps=[features],
adapter=Adapter({'X': E(features.name, 'features')}),
experiment_directory=config.pipeline.experiment_directory,
)
preprocessed = Step(name='preprocess{}'.format(suffix),
transformer=IdentityOperation(),
input_steps=[fillnaer, features],
adapter=Adapter({'features': E(fillnaer.name, 'transformed'),
'feature_names': E(features.name, 'feature_names'),
'categorical_features': E(features.name, 'categorical_features')
}),
experiment_directory=config.pipeline.experiment_directory,
**kwargs
)
if train_mode:
fillnaer_valid = Step(name='fillna_valid{}'.format(suffix),
transformer=fillnaer,
input_steps=[features_valid],
adapter=Adapter({'X': E(features_valid.name, 'features')}),
experiment_directory=config.pipeline.experiment_directory,
)
preprocessed_valid = Step(name='preprocess_valid{}'.format(suffix),
transformer=IdentityOperation(),
input_steps=[fillnaer_valid, features_valid],
adapter=Adapter({'features': E(fillnaer_valid.name, 'transformed'),
'feature_names': E(features_valid.name,
'feature_names'),
'categorical_features': E(features_valid.name,
'categorical_features')
}),
experiment_directory=config.pipeline.experiment_directory,
**kwargs
)
return preprocessed, preprocessed_valid
else:
return preprocessed
示例9: stacking_normalization
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def stacking_normalization(features, config, train_mode, suffix, **kwargs):
if train_mode:
features, features_valid = features
normalizer = Step(name='stacking_normalizer{}'.format(suffix),
transformer=Normalizer(),
input_steps=[features],
adapter=Adapter({'X': E(features.name, 'features')}),
experiment_directory=config.pipeline.experiment_directory,
)
stacking_normalized = Step(name='stacking_normalization{}'.format(suffix),
transformer=IdentityOperation(),
input_steps=[normalizer, features],
adapter=Adapter({'features': E(normalizer.name, 'X'),
'feature_names': E(features.name, 'feature_names'),
'categorical_features': E(features.name, 'categorical_features')
}),
experiment_directory=config.pipeline.experiment_directory,
**kwargs
)
if train_mode:
normalizer_valid = Step(name='stacking_normalizer_valid{}'.format(suffix),
transformer=normalizer,
input_steps=[features_valid],
adapter=Adapter({'X': E(features_valid.name, 'features')}),
experiment_directory=config.pipeline.experiment_directory,
)
stacking_normalized_valid = Step(name='stacking_normalization_valid{}'.format(suffix),
transformer=IdentityOperation(),
input_steps=[normalizer_valid, features_valid],
adapter=Adapter({'features': E(normalizer_valid.name, 'X'),
'feature_names': E(features_valid.name, 'feature_names'),
'categorical_features': E(features_valid.name,
'categorical_features')
}),
experiment_directory=config.pipeline.experiment_directory,
**kwargs
)
return stacking_normalized, stacking_normalized_valid
else:
return stacking_normalized
示例10: postprocessing_pipeline_simplified
# 需要导入模块: from steppy import base [as 别名]
# 或者: from steppy.base import IdentityOperation [as 别名]
def postprocessing_pipeline_simplified(cache_dirpath):
mask_resize = Step(name='mask_resize',
transformer=make_apply_transformer(post.resize_image,
output_name='resized_images',
apply_on=['images', 'target_sizes']),
input_data=['unet_output', 'callback_input'],
adapter={'images': ([('unet_output', 'multichannel_map_prediction')]),
'target_sizes': ([('callback_input', 'target_sizes')]),
},
cache_dirpath=cache_dirpath)
category_mapper = Step(name='category_mapper',
transformer=make_apply_transformer(post.categorize_image,
output_name='categorized_images'),
input_steps=[mask_resize],
adapter={'images': ([('mask_resize', 'resized_images')]),
},
cache_dirpath=cache_dirpath)
labeler = Step(name='labeler',
transformer=make_apply_transformer(post.label_multiclass_image,
output_name='labeled_images'),
input_steps=[category_mapper],
adapter={'images': ([(category_mapper.name, 'categorized_images')]),
},
cache_dirpath=cache_dirpath)
score_builder = Step(name='score_builder',
transformer=make_apply_transformer(post.build_score,
output_name='images_with_scores',
apply_on=['images', 'probabilities']),
input_steps=[labeler, mask_resize],
adapter={'images': ([(labeler.name, 'labeled_images')]),
'probabilities': ([(mask_resize.name, 'resized_images')]),
},
cache_dirpath=cache_dirpath)
output = Step(name='output',
transformer=IdentityOperation(),
input_steps=[score_builder],
adapter={'y_pred': ([(score_builder.name, 'images_with_scores')]),
},
cache_dirpath=cache_dirpath)
return output