本文整理汇总了Python中statistics.median_high方法的典型用法代码示例。如果您正苦于以下问题:Python statistics.median_high方法的具体用法?Python statistics.median_high怎么用?Python statistics.median_high使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类statistics
的用法示例。
在下文中一共展示了statistics.median_high方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_avg
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import median_high [as 别名]
def get_avg(metrics: List):
return median_high(metrics)
示例2: test_even_ints
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import median_high [as 别名]
def test_even_ints(self):
# Test median_high with an even number of ints.
data = [1, 2, 3, 4, 5, 6]
assert len(data)%2 == 0
self.assertEqual(self.func(data), 4)
示例3: test_even_fractions
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import median_high [as 别名]
def test_even_fractions(self):
# Test median_high works with an even number of Fractions.
F = Fraction
data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), F(4, 7))
示例4: test_even_decimals
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import median_high [as 别名]
def test_even_decimals(self):
# Test median_high works with an even number of Decimals.
D = Decimal
data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
assert len(data)%2 == 0
random.shuffle(data)
self.assertEqual(self.func(data), D('4.4'))
示例5: MEDIAN_HIGH
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import median_high [as 别名]
def MEDIAN_HIGH(df, n, price='Close'):
"""
High median of data
Returns: list of floats = jhta.MEDIAN_HIGH(df, n, price='Close')
"""
median_high_list = []
if n == len(df[price]):
start = None
for i in range(len(df[price])):
if df[price][i] != df[price][i]:
median_high = float('NaN')
else:
if start is None:
start = i
end = i + 1
median_high = statistics.median_high(df[price][start:end])
median_high_list.append(median_high)
else:
for i in range(len(df[price])):
if i + 1 < n:
median_high = float('NaN')
else:
start = i + 1 - n
end = i + 1
median_high = statistics.median_high(df[price][start:end])
median_high_list.append(median_high)
return median_high_list
示例6: test_secint
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import median_high [as 别名]
def test_secint(self):
secint = mpc.SecInt()
y = [1, 3, -2, 3, 1, -2, -2, 4] * 5
random.shuffle(y)
x = list(map(secint, y))
self.assertEqual(mpc.run(mpc.output(mean(x))), round(statistics.mean(y)))
self.assertEqual(mpc.run(mpc.output(variance(x))), round(statistics.variance(y)))
self.assertEqual(mpc.run(mpc.output(variance(x, mean(x)))), round(statistics.variance(y)))
self.assertEqual(mpc.run(mpc.output(stdev(x))), round(statistics.stdev(y)))
self.assertEqual(mpc.run(mpc.output(pvariance(x))), round(statistics.pvariance(y)))
self.assertEqual(mpc.run(mpc.output(pstdev(x))), round(statistics.pstdev(y)))
self.assertEqual(mpc.run(mpc.output(mode(x))), round(statistics.mode(y)))
self.assertEqual(mpc.run(mpc.output(median(x))), round(statistics.median(y)))
self.assertEqual(mpc.run(mpc.output(median_low(x))), round(statistics.median_low(y)))
self.assertEqual(mpc.run(mpc.output(median_high(x))), round(statistics.median_high(y)))
示例7: median_filter
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import median_high [as 别名]
def median_filter(x, y, dx_window, filter=statistics.median_high):
"""
Calculates the moving median-high of y values over a constant dx.
:param x:
x data.
:type x: Iterable
:param y:
y data.
:type y: Iterable
:param dx_window:
dx window.
:type dx_window: float
:param filter:
Filter function.
:type filter: callable
:return:
Moving median-high of y values over a constant dx.
:rtype: numpy.array
"""
xy = list(zip(x, y))
_y = []
add = _y.append
for v in sliding_window(xy, dx_window):
add(filter(list(zip(*v))[1]))
return np.array(_y)
示例8: clear_fluctuations
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import median_high [as 别名]
def clear_fluctuations(times, gears, dt_window):
"""
Clears the gear identification fluctuations.
:param times:
Time vector.
:type times: numpy.array
:param gears:
Gear vector.
:type gears: numpy.array
:param dt_window:
Time window.
:type dt_window: float
:return:
Gear vector corrected from fluctuations.
:rtype: numpy.array
"""
xy = [list(v) for v in zip(times, gears)]
for samples in sliding_window(xy, dt_window):
up, dn = False, False
x, y = zip(*samples)
for k, d in enumerate(np.diff(y)):
if d > 0:
up = True
elif d < 0:
dn = True
if up and dn:
m = statistics.median_high(y)
for v in samples:
v[1] = m
break
return np.array([y[1] for y in xy])
# noinspection PyUnusedLocal