本文整理汇总了Python中statistics.harmonic_mean方法的典型用法代码示例。如果您正苦于以下问题:Python statistics.harmonic_mean方法的具体用法?Python statistics.harmonic_mean怎么用?Python statistics.harmonic_mean使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类statistics
的用法示例。
在下文中一共展示了statistics.harmonic_mean方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: mean_harmonic
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import harmonic_mean [as 别名]
def mean_harmonic(self):
return statistics.harmonic_mean(self.price)
# 众数
示例2: mean_harmonic
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import harmonic_mean [as 别名]
def mean_harmonic(self):
'返回DataStruct.price的调和平均数'
res = self.price.groupby(level=1
).apply(lambda x: statistics.harmonic_mean(x))
res.name = 'mean_harmonic'
return res
# 众数
示例3: f1_score
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import harmonic_mean [as 别名]
def f1_score(ground_truth, signal, k):
"""Computes the f1 score for the top k words between frequency dicts.
Args:
ground_truth: The ground truth dict.
signal: The obtained heavy hitters dict.
k: The number of top items that are consider heavy hitters.
Returns:
F1 score of the signal in detecting a top k item.
"""
prec = precision(ground_truth, signal, k)
rec = recall(ground_truth, signal, k)
return statistics.harmonic_mean([prec, rec])
示例4: HARMONIC_MEAN
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import harmonic_mean [as 别名]
def HARMONIC_MEAN(df, n, price='Close'):
"""
Harmonic mean of data
Returns: list of floats = jhta.HARMONIC_MEAN(df, n, price='Close')
"""
harmonic_mean_list = []
if n == len(df[price]):
start = None
for i in range(len(df[price])):
if df[price][i] != df[price][i]:
harmonic_mean = float('NaN')
else:
if start is None:
start = i
end = i + 1
harmonic_mean = statistics.harmonic_mean(df[price][start:end])
harmonic_mean_list.append(harmonic_mean)
else:
for i in range(len(df[price])):
if i + 1 < n:
harmonic_mean = float('NaN')
else:
start = i + 1 - n
end = i + 1
harmonic_mean = statistics.harmonic_mean(df[price][start:end])
harmonic_mean_list.append(harmonic_mean)
return harmonic_mean_list
示例5: compute_metrics
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import harmonic_mean [as 别名]
def compute_metrics(qids_to_relevant_passageids, qids_to_ranked_candidate_passages,MaxMRRRank = 10):
"""Compute MRR metric
Args:
p_qids_to_relevant_passageids (dict): dictionary of query-passage mapping
Dict as read in with load_reference or load_reference_from_stream
p_qids_to_ranked_candidate_passages (dict): dictionary of query-passage candidates
Returns:
dict: dictionary of metrics {'MRR': <MRR Score>}
"""
all_scores = {}
MRR = 0
qids_with_relevant_passages = 0
ranking = []
for qid in qids_to_ranked_candidate_passages:
if qid in qids_to_relevant_passageids:
ranking.append(0)
target_pid = qids_to_relevant_passageids[qid]
candidate_pid = qids_to_ranked_candidate_passages[qid]
for i in range(0,MaxMRRRank):
if candidate_pid[i] in target_pid:
MRR += 1/(i + 1)
ranking.pop()
ranking.append(i+1)
break
if len(ranking) == 0:
raise IOError("No matching QIDs found. Are you sure you are scoring the evaluation set?")
MRR = MRR/len(ranking)
all_scores['MRR'] = MRR
all_scores['QueriesRanked'] = len(ranking)
all_scores['QueriesWithNoRelevant'] = sum((1 for x in ranking if x == 0))
all_scores['QueriesWithRelevant'] = sum((1 for x in ranking if x > 0))
all_scores['AverageRankGoldLabel@'+str(MaxMRRRank)] = statistics.mean((x for x in ranking if x > 0))
all_scores['MedianRankGoldLabel@'+str(MaxMRRRank)] = statistics.median((x for x in ranking if x > 0))
all_scores['AverageRankGoldLabel'] = statistics.mean(ranking)
all_scores['MedianRankGoldLabel'] = statistics.median(ranking)
all_scores['HarmonicMeanRankingGoldLabel'] = statistics.harmonic_mean(ranking)
return all_scores
示例6: harmonic_mean
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import harmonic_mean [as 别名]
def harmonic_mean(args):
if "harmonic_mean" not in dir(statistics):
return builtins.len(args) / sum([1 / x for x in args])
return statistics.harmonic_mean(args)
示例7: time_testcase_statistics
# 需要导入模块: import statistics [as 别名]
# 或者: from statistics import harmonic_mean [as 别名]
def time_testcase_statistics(
testcase: typing.Callable,
*args: typing.Any,
runs: int = 10,
sleep: float = 0,
**kwargs: typing.Any,
) -> None:
"""
Take multiple measurements about the run-time of a testcase and return/display statistics.
:param testcase: Testcase to call.
:param args,\\ kwargs: Arguments to pass to the testcase.
:param int runs: How many samples to take.
:param float sleep: How much time to sleep in between the runs. Example
use: Maybe the board does not discharge quick enough so it can cause
troubles when the subsecuent testcase run tries to boot again the board
"""
elapsed_times = []
for n in range(runs):
elapsed_time, _ = time_testcase(testcase, *args, **kwargs)
elapsed_times.append(elapsed_time)
time.sleep(sleep)
results = TimingResults(
statistics.mean(elapsed_times),
statistics.harmonic_mean(elapsed_times),
statistics.median(elapsed_times),
statistics.pvariance(elapsed_times),
statistics.pstdev(elapsed_times),
)
tbot.log.message(
f"""\
Timing Results:
{tbot.log.c('mean').green}: {results.mean}
{tbot.log.c('harmonic mean').green}: {results.harmonic_mean}
{tbot.log.c('median').green}: {results.median}
{tbot.log.c('variance').green}: {results.pvariance}
{tbot.log.c('standard deviation').green}: {results.pstdev}
"""
)