本文整理汇总了Python中src.utils.subplot方法的典型用法代码示例。如果您正苦于以下问题:Python utils.subplot方法的具体用法?Python utils.subplot怎么用?Python utils.subplot使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类src.utils
的用法示例。
在下文中一共展示了utils.subplot方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: save_d_at_t
# 需要导入模块: from src import utils [as 别名]
# 或者: from src.utils import subplot [as 别名]
def save_d_at_t(outputs, global_step, output_dir, metric_summary, N):
"""Save distance to goal at all time steps.
Args:
outputs : [gt_dist_to_goal].
global_step : number of iterations.
output_dir : output directory.
metric_summary : to append scalars to summary.
N : number of outputs to process.
"""
d_at_t = np.concatenate(map(lambda x: x[0][:,:,0]*1, outputs), axis=0)
fig, axes = utils.subplot(plt, (1,1), (5,5))
axes.plot(np.arange(d_at_t.shape[1]), np.mean(d_at_t, axis=0), 'r.')
axes.set_xlabel('time step')
axes.set_ylabel('dist to next goal')
axes.grid('on')
file_name = os.path.join(output_dir, 'dist_at_t_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
file_name = os.path.join(output_dir, 'dist_at_t_{:d}.pkl'.format(global_step))
utils.save_variables(file_name, [d_at_t], ['d_at_t'], overwrite=True)
plt.close(fig)
return None
示例2: _debug_save_map_nodes
# 需要导入模块: from src import utils [as 别名]
# 或者: from src.utils import subplot [as 别名]
def _debug_save_map_nodes(self, seed):
"""Saves traversible space along with nodes generated on the graph. Takes
the seed as input."""
img_path = os.path.join(self.logdir, '{:s}_{:d}_graph.png'.format(self.building_name, seed))
node_xyt = self.to_actual_xyt_vec(self.task.nodes)
plt.set_cmap('jet');
fig, ax = utils.subplot(plt, (1,1), (12,12))
ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
ax.set_axis_off(); ax.axis('equal');
if self.room_dims is not None:
for i, r in enumerate(self.room_dims['dims']*1):
min_ = r[:3]*1
max_ = r[3:]*1
xmin, ymin, zmin = min_
xmax, ymax, zmax = max_
ax.plot([xmin, xmax, xmax, xmin, xmin],
[ymin, ymin, ymax, ymax, ymin], 'g')
ax.imshow(self.traversible, origin='lower');
with fu.fopen(img_path, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
示例3: _vis_readout_maps
# 需要导入模块: from src import utils [as 别名]
# 或者: from src.utils import subplot [as 别名]
def _vis_readout_maps(outputs, global_step, output_dir, metric_summary, N):
# outputs is [gt_map, pred_map]:
if N >= 0:
outputs = outputs[:N]
N = len(outputs)
plt.set_cmap('jet')
fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*2), (5,5))
axes = axes.ravel()[::-1].tolist()
for i in range(N):
gt_map, pred_map = outputs[i]
for j in [0]:
for k in range(gt_map.shape[4]):
# Display something like the midpoint of the trajectory.
id = np.int(gt_map.shape[1]/2)
ax = axes.pop();
ax.imshow(gt_map[j,id,:,:,k], origin='lower', interpolation='none',
vmin=0., vmax=1.)
ax.set_axis_off();
if i == 0: ax.set_title('gt_map')
ax = axes.pop();
ax.imshow(pred_map[j,id,:,:,k], origin='lower', interpolation='none',
vmin=0., vmax=1.)
ax.set_axis_off();
if i == 0: ax.set_title('pred_map')
file_name = os.path.join(output_dir, 'readout_map_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
示例4: _vis
# 需要导入模块: from src import utils [as 别名]
# 或者: from src.utils import subplot [as 别名]
def _vis(outputs, global_step, output_dir, metric_summary, N):
# Plot the value map, goal for various maps to see what if the model is
# learning anything useful.
#
# outputs is [values, goals, maps, occupancy, conf].
#
if N >= 0:
outputs = outputs[:N]
N = len(outputs)
plt.set_cmap('jet')
fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*5), (5,5))
axes = axes.ravel()[::-1].tolist()
for i in range(N):
values, goals, maps, occupancy, conf = outputs[i]
for j in [0]:
for k in range(values.shape[4]):
# Display something like the midpoint of the trajectory.
id = np.int(values.shape[1]/2)
ax = axes.pop();
ax.imshow(goals[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('goal')
ax = axes.pop();
ax.imshow(occupancy[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('occupancy')
ax = axes.pop();
ax.imshow(conf[j,id,:,:,k], origin='lower', interpolation='none',
vmin=0., vmax=1.)
ax.set_axis_off();
if i == 0: ax.set_title('conf')
ax = axes.pop();
ax.imshow(values[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('value')
ax = axes.pop();
ax.imshow(maps[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('incr map')
file_name = os.path.join(output_dir, 'value_vis_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
示例5: plot_trajectories
# 需要导入模块: from src import utils [as 别名]
# 或者: from src.utils import subplot [as 别名]
def plot_trajectories(outputs, global_step, output_dir, metric_summary, N):
"""Processes the collected outputs during validation to plot the trajectories
in the top view.
Args:
outputs : [locs, orig_maps, goal_loc].
global_step : global_step.
output_dir : where to store results.
metric_summary : summary object to add summaries to.
N : number of outputs to process.
"""
if N >= 0:
outputs = outputs[:N]
N = len(outputs)
plt.set_cmap('gray')
fig, axes = utils.subplot(plt, (N, outputs[0][1].shape[0]), (5,5))
axes = axes.ravel()[::-1].tolist()
for i in range(N):
locs, orig_maps, goal_loc = outputs[i]
is_semantic = np.isnan(goal_loc[0,0,1])
for j in range(orig_maps.shape[0]):
ax = axes.pop();
ax.plot(locs[j,0,0], locs[j,0,1], 'ys')
# Plot one by one, so that they come in different colors.
for k in range(goal_loc.shape[1]):
if not is_semantic:
ax.plot(goal_loc[j,k,0], goal_loc[j,k,1], 's')
if False:
ax.plot(locs[j,:,0], locs[j,:,1], 'r.', ms=3)
ax.imshow(orig_maps[j,0,:,:,0], origin='lower')
ax.set_axis_off();
else:
ax.scatter(locs[j,:,0], locs[j,:,1], c=np.arange(locs.shape[1]),
cmap='jet', s=10, lw=0)
ax.imshow(orig_maps[j,0,:,:,0], origin='lower', vmin=-1.0, vmax=2.0)
if not is_semantic:
xymin = np.minimum(np.min(goal_loc[j,:,:], axis=0), np.min(locs[j,:,:], axis=0))
xymax = np.maximum(np.max(goal_loc[j,:,:], axis=0), np.max(locs[j,:,:], axis=0))
else:
xymin = np.min(locs[j,:,:], axis=0)
xymax = np.max(locs[j,:,:], axis=0)
xy1 = (xymax+xymin)/2. - np.maximum(np.max(xymax-xymin), 12)
xy2 = (xymax+xymin)/2. + np.maximum(np.max(xymax-xymin), 12)
ax.set_xlim([xy1[0], xy2[0]])
ax.set_ylim([xy1[1], xy2[1]])
ax.set_axis_off()
file_name = os.path.join(output_dir, 'trajectory_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
return None
示例6: _preprocess_for_task
# 需要导入模块: from src import utils [as 别名]
# 或者: from src.utils import subplot [as 别名]
def _preprocess_for_task(self, seed):
if self.task is None or self.task.seed != seed:
rng = np.random.RandomState(seed)
origin_loc = get_graph_origin_loc(rng, self.traversible)
self.task = utils.Foo(seed=seed, origin_loc=origin_loc,
n_ori=self.task_params.n_ori)
G = generate_graph(self.valid_fn_vec,
self.task_params.step_size, self.task.n_ori,
(0, 0, 0))
gtG, nodes, nodes_to_id = convert_to_graph_tool(G)
self.task.gtG = gtG
self.task.nodes = nodes
self.task.delta_theta = 2.0*np.pi/(self.task.n_ori*1.)
self.task.nodes_to_id = nodes_to_id
logging.info('Building %s, #V=%d, #E=%d', self.building_name,
self.task.nodes.shape[0], self.task.gtG.num_edges())
if self.logdir is not None:
write_traversible = cv2.applyColorMap(self.traversible.astype(np.uint8)*255, cv2.COLORMAP_JET)
img_path = os.path.join(self.logdir,
'{:s}_{:d}_graph.png'.format(self.building_name,
seed))
node_xyt = self.to_actual_xyt_vec(self.task.nodes)
plt.set_cmap('jet');
fig, ax = utils.subplot(plt, (1,1), (12,12))
ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
ax.imshow(self.traversible, origin='lower');
ax.set_axis_off(); ax.axis('equal');
ax.set_title('{:s}, {:d}, {:d}'.format(self.building_name,
self.task.nodes.shape[0],
self.task.gtG.num_edges()))
if self.room_dims is not None:
for i, r in enumerate(self.room_dims['dims']*1):
min_ = r[:3]*1
max_ = r[3:]*1
xmin, ymin, zmin = min_
xmax, ymax, zmax = max_
ax.plot([xmin, xmax, xmax, xmin, xmin],
[ymin, ymin, ymax, ymax, ymin], 'g')
with fu.fopen(img_path, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)