本文整理汇总了Python中sqlalchemy.orm.mapper.set方法的典型用法代码示例。如果您正苦于以下问题:Python mapper.set方法的具体用法?Python mapper.set怎么用?Python mapper.set使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sqlalchemy.orm.mapper
的用法示例。
在下文中一共展示了mapper.set方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __new__
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def __new__(cls, value_list):
if isinstance(value_list, util.string_types) or value_list is None:
return cls.from_string(value_list)
values = set(value_list)
if values.difference(cls._allowed_cascades):
raise sa_exc.ArgumentError(
"Invalid cascade option(s): %s" %
", ".join([repr(x) for x in
sorted(values.difference(cls._allowed_cascades))]))
if "all" in values:
values.update(cls._add_w_all_cascades)
if "none" in values:
values.clear()
values.discard('all')
self = frozenset.__new__(CascadeOptions, values)
self.save_update = 'save-update' in values
self.delete = 'delete' in values
self.refresh_expire = 'refresh-expire' in values
self.merge = 'merge' in values
self.expunge = 'expunge' in values
self.delete_orphan = "delete-orphan" in values
if self.delete_orphan and not self.delete:
util.warn("The 'delete-orphan' cascade "
"option requires 'delete'.")
return self
示例2: randomize_unitofwork
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def randomize_unitofwork():
"""Use random-ordering sets within the unit of work in order
to detect unit of work sorting issues.
This is a utility function that can be used to help reproduce
inconsistent unit of work sorting issues. For example,
if two kinds of objects A and B are being inserted, and
B has a foreign key reference to A - the A must be inserted first.
However, if there is no relationship between A and B, the unit of work
won't know to perform this sorting, and an operation may or may not
fail, depending on how the ordering works out. Since Python sets
and dictionaries have non-deterministic ordering, such an issue may
occur on some runs and not on others, and in practice it tends to
have a great dependence on the state of the interpreter. This leads
to so-called "heisenbugs" where changing entirely irrelevant aspects
of the test program still cause the failure behavior to change.
By calling ``randomize_unitofwork()`` when a script first runs, the
ordering of a key series of sets within the unit of work implementation
are randomized, so that the script can be minimized down to the
fundamental mapping and operation that's failing, while still reproducing
the issue on at least some runs.
This utility is also available when running the test suite via the
``--reversetop`` flag.
.. versionadded:: 0.8.1 created a standalone version of the
``--reversetop`` feature.
"""
from sqlalchemy.orm import unitofwork, session, mapper, dependency
from sqlalchemy.util import topological
from sqlalchemy.testing.util import RandomSet
topological.set = unitofwork.set = session.set = mapper.set = \
dependency.set = RandomSet
示例3: __new__
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def __new__(cls, arg):
values = set([
c for c
in re.split('\s*,\s*', arg or "")
if c
])
if values.difference(cls._allowed_cascades):
raise sa_exc.ArgumentError(
"Invalid cascade option(s): %s" %
", ".join([repr(x) for x in
sorted(
values.difference(cls._allowed_cascades)
)])
)
if "all" in values:
values.update(cls._add_w_all_cascades)
if "none" in values:
values.clear()
values.discard('all')
self = frozenset.__new__(CascadeOptions, values)
self.save_update = 'save-update' in values
self.delete = 'delete' in values
self.refresh_expire = 'refresh-expire' in values
self.merge = 'merge' in values
self.expunge = 'expunge' in values
self.delete_orphan = "delete-orphan" in values
if self.delete_orphan and not self.delete:
util.warn("The 'delete-orphan' cascade "
"option requires 'delete'.")
return self
示例4: __new__
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def __new__(cls, value_list):
if isinstance(value_list, util.string_types) or value_list is None:
return cls.from_string(value_list)
values = set(value_list)
if values.difference(cls._allowed_cascades):
raise sa_exc.ArgumentError(
"Invalid cascade option(s): %s"
% ", ".join(
[
repr(x)
for x in sorted(
values.difference(cls._allowed_cascades)
)
]
)
)
if "all" in values:
values.update(cls._add_w_all_cascades)
if "none" in values:
values.clear()
values.discard("all")
self = frozenset.__new__(CascadeOptions, values)
self.save_update = "save-update" in values
self.delete = "delete" in values
self.refresh_expire = "refresh-expire" in values
self.merge = "merge" in values
self.expunge = "expunge" in values
self.delete_orphan = "delete-orphan" in values
if self.delete_orphan and not self.delete:
util.warn(
"The 'delete-orphan' cascade " "option requires 'delete'."
)
return self
示例5: randomize_unitofwork
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def randomize_unitofwork():
"""Use random-ordering sets within the unit of work in order
to detect unit of work sorting issues.
This is a utility function that can be used to help reproduce
inconsistent unit of work sorting issues. For example,
if two kinds of objects A and B are being inserted, and
B has a foreign key reference to A - the A must be inserted first.
However, if there is no relationship between A and B, the unit of work
won't know to perform this sorting, and an operation may or may not
fail, depending on how the ordering works out. Since Python sets
and dictionaries have non-deterministic ordering, such an issue may
occur on some runs and not on others, and in practice it tends to
have a great dependence on the state of the interpreter. This leads
to so-called "heisenbugs" where changing entirely irrelevant aspects
of the test program still cause the failure behavior to change.
By calling ``randomize_unitofwork()`` when a script first runs, the
ordering of a key series of sets within the unit of work implementation
are randomized, so that the script can be minimized down to the
fundamental mapping and operation that's failing, while still reproducing
the issue on at least some runs.
This utility is also available when running the test suite via the
``--reversetop`` flag.
"""
from sqlalchemy.orm import unitofwork, session, mapper, dependency
from sqlalchemy.util import topological
from sqlalchemy.testing.util import RandomSet
topological.set = (
unitofwork.set
) = session.set = mapper.set = dependency.set = RandomSet
示例6: __new__
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def __new__(cls, arg):
values = set([
c for c
in re.split('\s*,\s*', arg or "")
if c
])
if values.difference(cls._allowed_cascades):
raise sa_exc.ArgumentError(
"Invalid cascade option(s): %s" %
", ".join([repr(x) for x in
sorted(
values.difference(cls._allowed_cascades)
)])
)
if "all" in values:
values.update(cls._add_w_all_cascades)
if "none" in values:
values.clear()
values.discard('all')
self = frozenset.__new__(CascadeOptions, values)
self.save_update = 'save-update' in values
self.delete = 'delete' in values
self.refresh_expire = 'refresh-expire' in values
self.merge = 'merge' in values
self.expunge = 'expunge' in values
self.delete_orphan = "delete-orphan" in values
if self.delete_orphan and not self.delete:
util.warn("The 'delete-orphan' cascade "
"option requires 'delete'.")
return self
示例7: randomize_unitofwork
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def randomize_unitofwork():
"""Use random-ordering sets within the unit of work in order
to detect unit of work sorting issues.
This is a utility function that can be used to help reproduce
inconsistent unit of work sorting issues. For example,
if two kinds of objects A and B are being inserted, and
B has a foreign key reference to A - the A must be inserted first.
However, if there is no relationship between A and B, the unit of work
won't know to perform this sorting, and an operation may or may not
fail, depending on how the ordering works out. Since Python sets
and dictionaries have non-deterministic ordering, such an issue may
occur on some runs and not on others, and in practice it tends to
have a great dependence on the state of the interpreter. This leads
to so-called "heisenbugs" where changing entirely irrelevant aspects
of the test program still cause the failure behavior to change.
By calling ``randomize_unitofwork()`` when a script first runs, the
ordering of a key series of sets within the unit of work implementation
are randomized, so that the script can be minimized down to the fundamental
mapping and operation that's failing, while still reproducing the issue
on at least some runs.
This utility is also available when running the test suite via the
``--reversetop`` flag.
.. versionadded:: 0.8.1 created a standalone version of the
``--reversetop`` feature.
"""
from sqlalchemy.orm import unitofwork, session, mapper, dependency
from sqlalchemy.util import topological
from sqlalchemy.testing.util import RandomSet
topological.set = unitofwork.set = session.set = mapper.set = \
dependency.set = RandomSet
示例8: _validator_events
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def _validator_events(
desc, key, validator, include_removes, include_backrefs):
"""Runs a validation method on an attribute value to be set or
appended.
"""
if not include_backrefs:
def detect_is_backref(state, initiator):
impl = state.manager[key].impl
return initiator.impl is not impl
if include_removes:
def append(state, value, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
return validator(state.obj(), key, value, False)
else:
return value
def set_(state, value, oldvalue, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
return validator(state.obj(), key, value, False)
else:
return value
def remove(state, value, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
validator(state.obj(), key, value, True)
else:
def append(state, value, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
return validator(state.obj(), key, value)
else:
return value
def set_(state, value, oldvalue, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
return validator(state.obj(), key, value)
else:
return value
event.listen(desc, 'append', append, raw=True, retval=True)
event.listen(desc, 'set', set_, raw=True, retval=True)
if include_removes:
event.listen(desc, "remove", remove, raw=True, retval=True)
示例9: _validator_events
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def _validator_events(desc, key, validator, include_removes, include_backrefs):
"""Runs a validation method on an attribute value to be set or appended."""
if not include_backrefs:
def detect_is_backref(state, initiator):
impl = state.manager[key].impl
return initiator.impl is not impl
if include_removes:
def append(state, value, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
return validator(state.obj(), key, value, False)
else:
return value
def set_(state, value, oldvalue, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
return validator(state.obj(), key, value, False)
else:
return value
def remove(state, value, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
validator(state.obj(), key, value, True)
else:
def append(state, value, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
return validator(state.obj(), key, value)
else:
return value
def set_(state, value, oldvalue, initiator):
if include_backrefs or not detect_is_backref(state, initiator):
return validator(state.obj(), key, value)
else:
return value
event.listen(desc, 'append', append, raw=True, retval=True)
event.listen(desc, 'set', set_, raw=True, retval=True)
if include_removes:
event.listen(desc, "remove", remove, raw=True, retval=True)
示例10: polymorphic_union
# 需要导入模块: from sqlalchemy.orm import mapper [as 别名]
# 或者: from sqlalchemy.orm.mapper import set [as 别名]
def polymorphic_union(table_map, typecolname,
aliasname='p_union', cast_nulls=True):
"""Create a ``UNION`` statement used by a polymorphic mapper.
See :ref:`concrete_inheritance` for an example of how
this is used.
:param table_map: mapping of polymorphic identities to
:class:`.Table` objects.
:param typecolname: string name of a "discriminator" column, which will be
derived from the query, producing the polymorphic identity for
each row. If ``None``, no polymorphic discriminator is generated.
:param aliasname: name of the :func:`~sqlalchemy.sql.expression.alias()`
construct generated.
:param cast_nulls: if True, non-existent columns, which are represented
as labeled NULLs, will be passed into CAST. This is a legacy behavior
that is problematic on some backends such as Oracle - in which case it
can be set to False.
"""
colnames = util.OrderedSet()
colnamemaps = {}
types = {}
for key in table_map:
table = table_map[key]
# mysql doesnt like selecting from a select;
# make it an alias of the select
if isinstance(table, sql.Select):
table = table.alias()
table_map[key] = table
m = {}
for c in table.c:
colnames.add(c.key)
m[c.key] = c
types[c.key] = c.type
colnamemaps[table] = m
def col(name, table):
try:
return colnamemaps[table][name]
except KeyError:
if cast_nulls:
return sql.cast(sql.null(), types[name]).label(name)
else:
return sql.type_coerce(sql.null(), types[name]).label(name)
result = []
for type, table in table_map.items():
if typecolname is not None:
result.append(
sql.select([col(name, table) for name in colnames] +
[sql.literal_column(sql_util._quote_ddl_expr(type)).
label(typecolname)],
from_obj=[table]))
else:
result.append(sql.select([col(name, table) for name in colnames],
from_obj=[table]))
return sql.union_all(*result).alias(aliasname)