当前位置: 首页>>代码示例>>Python>>正文


Python sonnet.Conv1D方法代码示例

本文整理汇总了Python中sonnet.Conv1D方法的典型用法代码示例。如果您正苦于以下问题:Python sonnet.Conv1D方法的具体用法?Python sonnet.Conv1D怎么用?Python sonnet.Conv1D使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sonnet的用法示例。


在下文中一共展示了sonnet.Conv1D方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _build

# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import Conv1D [as 别名]
def _build(self, x):
    # x is [units, bs, 1]
    net = tf.transpose(x, [1, 0, 2])  # now [bs x units x 1]
    channels = x.shape.as_list()[2]
    mod = snt.Conv1D(output_channels=channels, kernel_shape=[3])
    net = mod(net)
    net = snt.BatchNorm(axis=[0, 1])(net, is_training=False)
    net = tf.nn.relu(net)
    mod = snt.Conv1D(output_channels=channels, kernel_shape=[3])
    net = mod(net)
    net = snt.BatchNorm(axis=[0, 1])(net, is_training=False)
    net = tf.nn.relu(net)
    to_concat = tf.transpose(net, [1, 0, 2])
    if self.add:
      return x + to_concat
    else:
      return tf.concat([x, to_concat], 2) 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:19,代码来源:more_local_weight_update.py

示例2: testConv1dIntervalBounds

# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import Conv1D [as 别名]
def testConv1dIntervalBounds(self):
    m = snt.Conv1D(
        output_channels=1,
        kernel_shape=2,
        padding='VALID',
        stride=1,
        use_bias=True,
        initializers={
            'w': tf.constant_initializer(1.),
            'b': tf.constant_initializer(2.),
        })
    z = tf.constant([3, 4], dtype=tf.float32)
    z = tf.reshape(z, [1, 2, 1])
    m(z)  # Connect to create weights.
    m = ibp.LinearConv1dWrapper(m)
    input_bounds = ibp.IntervalBounds(z - 1., z + 1.)
    output_bounds = m.propagate_bounds(input_bounds)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      l, u = sess.run([output_bounds.lower, output_bounds.upper])
      l = l.item()
      u = u.item()
      self.assertAlmostEqual(7., l)
      self.assertAlmostEqual(11., u) 
开发者ID:deepmind,项目名称:interval-bound-propagation,代码行数:26,代码来源:bounds_test.py

示例3: _inputs_for_observed_module

# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import Conv1D [as 别名]
def _inputs_for_observed_module(self, subgraph):
    """Extracts input tensors from a connected Sonnet module.

    This default implementation supports common layer types, but should be
    overridden if custom layer types are to be supported.

    Args:
      subgraph: `snt.ConnectedSubGraph` specifying the Sonnet module being
        connected, and its inputs and outputs.

    Returns:
      List of input tensors, or None if not a supported Sonnet module.
    """
    m = subgraph.module
    # Only support a few operations for now.
    if not (isinstance(m, snt.BatchReshape) or
            isinstance(m, snt.Linear) or
            isinstance(m, snt.Conv1D) or
            isinstance(m, snt.Conv2D) or
            isinstance(m, snt.BatchNorm) or
            isinstance(m, layers.ImageNorm)):
      return None

    if isinstance(m, snt.BatchNorm):
      return subgraph.inputs['input_batch'],
    else:
      return subgraph.inputs['inputs'], 
开发者ID:deepmind,项目名称:interval-bound-propagation,代码行数:29,代码来源:model.py

示例4: _wrapper_for_observed_module

# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import Conv1D [as 别名]
def _wrapper_for_observed_module(self, subgraph):
    """Creates a wrapper for a connected Sonnet module.

    This default implementation supports common layer types, but should be
    overridden if custom layer types are to be supported.

    Args:
      subgraph: `snt.ConnectedSubGraph` specifying the Sonnet module being
        connected, and its inputs and outputs.

    Returns:
      `ibp.VerifiableWrapper` for the Sonnet module.
    """
    m = subgraph.module
    if isinstance(m, snt.BatchReshape):
      shape = subgraph.outputs.get_shape()[1:].as_list()
      return verifiable_wrapper.BatchReshapeWrapper(m, shape)
    elif isinstance(m, snt.Linear):
      return verifiable_wrapper.LinearFCWrapper(m)
    elif isinstance(m, snt.Conv1D):
      return verifiable_wrapper.LinearConv1dWrapper(m)
    elif isinstance(m, snt.Conv2D):
      return verifiable_wrapper.LinearConv2dWrapper(m)
    elif isinstance(m, layers.ImageNorm):
      return verifiable_wrapper.ImageNormWrapper(m)
    else:
      assert isinstance(m, snt.BatchNorm)
      return verifiable_wrapper.BatchNormWrapper(m) 
开发者ID:deepmind,项目名称:interval-bound-propagation,代码行数:30,代码来源:model.py

示例5: __init__

# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import Conv1D [as 别名]
def __init__(self, module):
    if not isinstance(module, snt.Conv1D):
      raise ValueError('Cannot wrap {} with a LinearConv1dWrapper.'.format(
          module))
    super(LinearConv1dWrapper, self).__init__(module) 
开发者ID:deepmind,项目名称:interval-bound-propagation,代码行数:7,代码来源:verifiable_wrapper.py

示例6: testConv1dSymbolicBounds

# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import Conv1D [as 别名]
def testConv1dSymbolicBounds(self):
    m = snt.Conv1D(
        output_channels=1,
        kernel_shape=(2),
        padding='VALID',
        stride=1,
        use_bias=True,
        initializers={
            'w': tf.constant_initializer(1.),
            'b': tf.constant_initializer(3.),
        })
    z = tf.constant([3, 4], dtype=tf.float32)
    z = tf.reshape(z, [1, 2, 1])
    m(z)  # Connect to create weights.
    m = ibp.LinearConv1dWrapper(m)
    input_bounds = ibp.IntervalBounds(z - 1., z + 1.)
    input_bounds = ibp.SymbolicBounds.convert(input_bounds)
    output_bounds = m.propagate_bounds(input_bounds)
    output_bounds = ibp.IntervalBounds.convert(output_bounds)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      l, u = sess.run([output_bounds.lower, output_bounds.upper])
      l = l.item()
      u = u.item()
      self.assertAlmostEqual(8., l)
      self.assertAlmostEqual(12., u) 
开发者ID:deepmind,项目名称:interval-bound-propagation,代码行数:28,代码来源:fastlin_test.py

示例7: compute_top_delta

# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import Conv1D [as 别名]
def compute_top_delta(self, z):
    """ parameterization of topD. This converts the top level activation
    to an error signal.
    Args:
      z: tf.Tensor
        batch of final layer post activations
    Returns
      delta: tf.Tensor
        the error signal
    """
    s_idx = 0
    with tf.variable_scope('compute_top_delta'), tf.device(self.remote_device):
      # typically this takes [BS, length, input_channels],
      # We are applying this such that we convolve over the batch dimension.
      act = tf.expand_dims(tf.transpose(z, [1, 0]), 2)  # [channels, BS, 1]

      mod = snt.Conv1D(output_channels=self.top_delta_size, kernel_shape=[5])
      act = mod(act)

      act = snt.BatchNorm(axis=[0, 1])(act, is_training=False)
      act = tf.nn.relu(act)

      bs = act.shape.as_list()[0]
      act = tf.transpose(act, [2, 1, 0])
      act = snt.Conv1D(output_channels=bs, kernel_shape=[3])(act)
      act = snt.BatchNorm(axis=[0, 1])(act, is_training=False)
      act = tf.nn.relu(act)
      act = snt.Conv1D(output_channels=bs, kernel_shape=[3])(act)
      act = snt.BatchNorm(axis=[0, 1])(act, is_training=False)
      act = tf.nn.relu(act)
      act = tf.transpose(act, [2, 1, 0])

      prev_act = act
      for i in range(self.top_delta_layers):
        mod = snt.Conv1D(output_channels=self.top_delta_size, kernel_shape=[3])
        act = mod(act)

        act = snt.BatchNorm(axis=[0, 1])(act, is_training=False)
        act = tf.nn.relu(act)

        prev_act = act

      mod = snt.Conv1D(output_channels=self.delta_dim, kernel_shape=[3])
      act = mod(act)

      # [bs, feature_channels, delta_channels]
      act = tf.transpose(act, [1, 0, 2])
      return act 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:50,代码来源:more_local_weight_update.py


注:本文中的sonnet.Conv1D方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。