本文整理汇总了Python中sonnet.BatchFlatten方法的典型用法代码示例。如果您正苦于以下问题:Python sonnet.BatchFlatten方法的具体用法?Python sonnet.BatchFlatten怎么用?Python sonnet.BatchFlatten使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sonnet
的用法示例。
在下文中一共展示了sonnet.BatchFlatten方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: custom_build
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def custom_build(inputs, is_training, keep_prob):
x_inputs = tf.reshape(inputs, [-1, 28, 28, 1])
"""A custom build method to wrap into a sonnet Module."""
outputs = snt.Conv2D(output_channels=32, kernel_shape=4, stride=2)(x_inputs)
outputs = snt.BatchNorm()(outputs, is_training=is_training)
outputs = tf.nn.relu(outputs)
outputs = tf.nn.max_pool(outputs, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
outputs = snt.Conv2D(output_channels=64, kernel_shape=4, stride=2)(outputs)
outputs = snt.BatchNorm()(outputs, is_training=is_training)
outputs = tf.nn.relu(outputs)
outputs = tf.nn.max_pool(outputs, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
outputs = snt.Conv2D(output_channels=1024, kernel_shape=1, stride=1)(outputs)
outputs = snt.BatchNorm()(outputs, is_training=is_training)
outputs = tf.nn.relu(outputs)
outputs = snt.BatchFlatten()(outputs)
outputs = tf.nn.dropout(outputs, keep_prob=keep_prob)
outputs = snt.Linear(output_size=10)(outputs)
# _activation_summary(outputs)
return outputs
示例2: custom_build
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def custom_build(self, inputs):
"""A custom build method to wrap into a sonnet Module."""
outputs = snt.Conv2D(output_channels=16, kernel_shape=[7, 7], stride=[1, 1])(inputs)
outputs = tf.nn.relu(outputs)
outputs = snt.Conv2D(output_channels=16, kernel_shape=[5, 5], stride=[1, 2])(outputs)
outputs = tf.nn.relu(outputs)
outputs = snt.Conv2D(output_channels=16, kernel_shape=[5, 5], stride=[1, 2])(outputs)
outputs = tf.nn.relu(outputs)
outputs = snt.Conv2D(output_channels=16, kernel_shape=[5, 5], stride=[2, 2])(outputs)
outputs = tf.nn.relu(outputs)
outputs = tf.nn.dropout(outputs, self.placeholders['keep_prob'])
outputs = snt.BatchFlatten()(outputs)
outputs = snt.Linear(128)(outputs)
outputs = tf.nn.relu(outputs)
return outputs
示例3: _torso
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def _torso(self, input_):
"""Processing of all the visual and language inputs to the LSTM core."""
# Extract the inputs
last_action, env_output = input_
last_reward, _, _, observation = env_output
frame = observation[self._idx_frame]
goal = observation[self._idx_goal]
goal = tf.to_float(goal)
# Convert to image to floats and normalise.
frame = tf.to_float(frame)
frame = snt.FlattenTrailingDimensions(dim_from=3)(frame)
frame /= 255.0
# Feed image through convnet.
with tf.variable_scope('convnet'):
# Convolutional layers.
conv_out = self._convnet(frame)
# Fully connected layer.
conv_out = snt.BatchFlatten()(conv_out)
conv_out = snt.Linear(256)(conv_out)
conv_out = tf.nn.relu(conv_out)
# Concatenate outputs of the visual and instruction pathways.
if self._feed_action_and_reward:
# Append clipped last reward and one hot last action.
tf.logging.info('Append last reward clipped to: %f', self._max_reward)
clipped_last_reward = tf.expand_dims(
tf.clip_by_value(last_reward, -self._max_reward, self._max_reward),
-1)
tf.logging.info('Append last action (one-hot of %d)', self._num_actions)
one_hot_last_action = tf.one_hot(last_action, self._num_actions)
tf.logging.info('Append goal:')
tf.logging.info(goal)
action_and_reward = tf.concat([clipped_last_reward, one_hot_last_action],
axis=1)
else:
action_and_reward = tf.constant([0], dtype=tf.float32)
return conv_out, action_and_reward, goal
示例4: _build
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def _build(self, inputs):
if FLAGS.l2_reg:
regularizers = {'w': lambda w: FLAGS.l2_reg*tf.nn.l2_loss(w),
'b': lambda w: FLAGS.l2_reg*tf.nn.l2_loss(w),}
else:
regularizers = None
reshape = snt.BatchReshape([28, 28, 1])
conv = snt.Conv2D(2, 5, padding=snt.SAME, regularizers=regularizers)
act = _NONLINEARITY(conv(reshape(inputs)))
pool = tf.nn.pool(act, window_shape=(2, 2), pooling_type=_POOL,
padding=snt.SAME, strides=(2, 2))
conv = snt.Conv2D(4, 5, padding=snt.SAME, regularizers=regularizers)
act = _NONLINEARITY(conv(pool))
pool = tf.nn.pool(act, window_shape=(2, 2), pooling_type=_POOL,
padding=snt.SAME, strides=(2, 2))
flatten = snt.BatchFlatten()(pool)
linear = snt.Linear(32, regularizers=regularizers)(flatten)
return snt.Linear(10, regularizers=regularizers)(linear)
示例5: test_train
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def test_train(self):
image = tf.random_uniform(shape=(_BATCH_SIZE, 784), maxval=1.)
labels = tf.random_uniform(shape=(_BATCH_SIZE,), maxval=10, dtype=tf.int32)
labels_one_hot = tf.one_hot(labels, 10)
model = snt.Sequential([snt.BatchFlatten(), snt.nets.MLP([128, 128, 10])])
logits = model(image)
all_losses = tf.nn.softmax_cross_entropy_with_logits_v2(
logits=logits, labels=labels_one_hot)
loss = tf.reduce_mean(all_losses)
layers = layer_collection.LayerCollection()
optimizer = periodic_inv_cov_update_kfac_opt.PeriodicInvCovUpdateKfacOpt(
invert_every=10,
cov_update_every=1,
learning_rate=0.03,
cov_ema_decay=0.95,
damping=100.,
layer_collection=layers,
momentum=0.9,
num_burnin_steps=0,
placement_strategy="round_robin")
_construct_layer_collection(layers, [logits], tf.trainable_variables())
train_step = optimizer.minimize(loss)
counter = optimizer.counter
max_iterations = 50
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
tf.train.start_queue_runners(sess=sess, coord=coord)
for iteration in range(max_iterations):
sess.run([loss, train_step])
counter_ = sess.run(counter)
self.assertEqual(counter_, iteration + 1.0)
示例6: __init__
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def __init__(self, module):
if not isinstance(module, snt.BatchFlatten):
raise ValueError('Cannot wrap {} with a BatchFlattenWrapper.'.format(
module))
super(BatchFlattenWrapper, self).__init__(module, [-1])
示例7: _initial_symbolic_bounds
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def _initial_symbolic_bounds(lb, ub):
"""Returns symbolic bounds for the given interval bounds."""
batch_size = tf.shape(lb)[0]
input_shape = lb.shape[1:]
zero = tf.zeros_like(lb)
lb = snt.BatchFlatten()(lb)
ub = snt.BatchFlatten()(ub)
input_size = tf.shape(lb)[1]
output_shape = tf.concat([[input_size], input_shape], axis=0)
identity = tf.reshape(tf.eye(input_size), output_shape)
identity = tf.expand_dims(identity, 0)
identity = tf.tile(identity, [batch_size] + [1] * (len(input_shape) + 1))
expr = LinearExpression(w=identity, b=zero,
lower=lb, upper=ub)
return expr, expr
示例8: testVerifiableModelWrapperDNN
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def testVerifiableModelWrapperDNN(self):
predictor = _build_model()
# Input.
z = tf.constant([1, 2, 3, 4], dtype=tf.float32)
z = tf.reshape(z, [1, 2, 2, 1])
wrapper = ibp.VerifiableModelWrapper(predictor)
wrapper(z)
# Verify basic wrapping.
self.assertEqual(predictor, wrapper.wrapped_network)
self.assertEqual(3, wrapper.output_size)
self.assertEqual((1, 3), tuple(wrapper.logits.shape.as_list()))
self.assertEqual(z, wrapper.inputs)
# Build another input and test reuse.
z2 = tf.constant([1, 2, 3, 4], dtype=tf.float32)
z2 = tf.reshape(z, [1, 2, 2, 1])
logits = wrapper(z2, reuse=True)
self.assertEqual(z, wrapper.inputs)
self.assertNotEqual(z2, wrapper.inputs)
# Check that the verifiable modules are constructed.
self.assertLen(wrapper.input_wrappers, 1)
self.assertLen(wrapper.modules, 6)
self.assertIsInstance(wrapper.modules[0].module, snt.Conv2D)
self.assertEqual(wrapper.modules[1].module, tf.nn.relu)
self.assertIsInstance(wrapper.modules[2].module, snt.BatchFlatten)
self.assertIsInstance(wrapper.modules[3].module, snt.Linear)
self.assertEqual(wrapper.modules[4].module, tf.nn.relu)
self.assertIsInstance(wrapper.modules[5].module, snt.Linear)
# It's a sequential network, so all nodes (including input) have fanout 1.
self.assertEqual(wrapper.fanout_of(wrapper.input_wrappers[0]), 1)
for module in wrapper.modules:
self.assertEqual(wrapper.fanout_of(module), 1)
# Check propagation.
self._propagation_test(wrapper, z2, logits)
示例9: testPointlessReshape
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def testPointlessReshape(self):
def _build(z0):
z = snt.Linear(10)(z0)
z = snt.BatchFlatten()(z) # This is a no-op; no graph nodes created.
return snt.Linear(2)(z)
z = tf.constant([[1, 2, 3, 4]], dtype=tf.float32)
wrapper = ibp.VerifiableModelWrapper(_build)
logits = wrapper(z)
# Expect the batch flatten to have been skipped.
self.assertLen(wrapper.modules, 2)
self.assertIsInstance(wrapper.modules[0], ibp.LinearFCWrapper)
self.assertIsInstance(wrapper.modules[1], ibp.LinearFCWrapper)
# Check propagation.
self._propagation_test(wrapper, z, logits)
示例10: load
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def load(config, **inputs):
imgs, labels = inputs['train_img'], inputs['train_label']
imgs = snt.BatchFlatten()(imgs)
mlp = snt.nets.MLP([config.n_hidden, 10])
logits = mlp(imgs)
labels = tf.cast(labels, tf.int32)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels))
pred_class = tf.argmax(logits, -1)
acc = tf.reduce_mean(tf.to_float(tf.equal(tf.to_int32(pred_class), labels)))
# put here everything that you might want to use later
# for example when you load the model in a jupyter notebook
artefects = {
'mlp': mlp,
'logits': logits,
'loss': loss,
'pred_class': pred_class,
'accuracy': acc
}
# put here everything that you'd like to be reported every N training iterations
# as tensorboard logs AND on the command line
stats = {'crossentropy': loss, 'accuracy': acc}
# loss will be minimized with respect to the model parameters
return loss, stats, artefects
示例11: _build
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def _build(self, inp):
input_sizes = snt.nest.map(lambda inp_i: inp_i.get_shape()[1:], inp)
self._merge_input_sizes(input_sizes)
flatten = snt.BatchFlatten(preserve_dims=1)
flat_inp = snt.nest.map(lambda inp_i: tf.to_float(flatten(inp_i)), inp)
ret = util.concat_features(flat_inp)
util.set_tensor_shapes(ret, self.output_size, add_batch_dims=1)
return ret
示例12: mnist
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def mnist(layers, # pylint: disable=invalid-name
activation="sigmoid",
batch_size=128,
mode="train"):
"""Mnist classification with a multi-layer perceptron."""
if activation == "sigmoid":
activation_op = tf.sigmoid
elif activation == "relu":
activation_op = tf.nn.relu
else:
raise ValueError("{} activation not supported".format(activation))
# Data.
data = mnist_dataset.load_mnist()
data = getattr(data, mode)
images = tf.constant(data.images, dtype=tf.float32, name="MNIST_images")
images = tf.reshape(images, [-1, 28, 28, 1])
labels = tf.constant(data.labels, dtype=tf.int64, name="MNIST_labels")
# Network.
mlp = snt.nets.MLP(list(layers) + [10],
activation=activation_op,
initializers=_nn_initializers)
network = snt.Sequential([snt.BatchFlatten(), mlp])
def build():
indices = tf.random_uniform([batch_size], 0, data.num_examples, tf.int64)
batch_images = tf.gather(images, indices)
batch_labels = tf.gather(labels, indices)
output = network(batch_images)
return _xent_loss(output, batch_labels)
return build
示例13: __init__
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def __init__(self, init_with_true_state=False, model='2lstm', **unused_kwargs):
self.placeholders = {'o': tf.placeholder('float32', [None, None, 24, 24, 3], 'observations'),
'a': tf.placeholder('float32', [None, None, 3], 'actions'),
's': tf.placeholder('float32', [None, None, 3], 'states'),
'keep_prob': tf.placeholder('float32')}
self.pred_states = None
self.init_with_true_state = init_with_true_state
self.model = model
# build models
# <-- observation
self.encoder = snt.Sequential([
snt.nets.ConvNet2D([16, 32, 64], [[3, 3]], [2], [snt.SAME], activate_final=True, name='encoder/convnet'),
snt.BatchFlatten(),
lambda x: tf.nn.dropout(x, self.placeholders['keep_prob']),
snt.Linear(128, name='encoder/Linear'),
tf.nn.relu,
])
# <-- action
if self.model == '2lstm':
self.rnn1 = snt.LSTM(512)
self.rnn2 = snt.LSTM(512)
if self.model == '2gru':
self.rnn1 = snt.GRU(512)
self.rnn2 = snt.GRU(512)
elif self.model == 'ff':
self.ff_lstm_replacement = snt.Sequential([
snt.Linear(512),
tf.nn.relu,
snt.Linear(512),
tf.nn.relu])
self.belief_decoder = snt.Sequential([
snt.Linear(256),
tf.nn.relu,
snt.Linear(256),
tf.nn.relu,
snt.Linear(3)
])
示例14: connect_modules
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def connect_modules(self, means, stds, state_mins, state_maxs, state_step_sizes):
# tracking_info_full = tf.tile(((self.placeholders['s'] - means['s']) / stds['s'])[:, :1, :], [1, tf.shape(self.placeholders['s'])[1], 1])
tracking_info = tf.concat([((self.placeholders['s'] - means['s']) / stds['s'])[:, :1, :], tf.zeros_like(self.placeholders['s'][:,1:,:])], axis=1)
flag = tf.concat([tf.ones_like(self.placeholders['s'][:,:1,:1]), tf.zeros_like(self.placeholders['s'][:,1:,:1])], axis=1)
preproc_o = snt.BatchApply(self.encoder)((self.placeholders['o'] - means['o']) / stds['o'])
# include tracking info
if self.init_with_true_state:
# preproc_o = tf.concat([preproc_o, tracking_info, flag], axis=2)
preproc_o = tf.concat([preproc_o, tracking_info, flag], axis=2)
# preproc_o = tf.concat([preproc_o, tracking_info_full], axis=2)
preproc_a = snt.BatchApply(snt.BatchFlatten())(self.placeholders['a'] / stds['a'])
preproc_ao = tf.concat([preproc_o, preproc_a], axis=-1)
if self.model == '2lstm' or self.model == '2gru':
lstm1_out, lstm1_final_state = tf.nn.dynamic_rnn(self.rnn1, preproc_ao, dtype=tf.float32)
lstm2_out, lstm2_final_state = tf.nn.dynamic_rnn(self.rnn2, lstm1_out, dtype=tf.float32)
belief_list = lstm2_out
elif self.model == 'ff':
belief_list = snt.BatchApply(self.ff_lstm_replacement)(preproc_ao)
self.pred_states = snt.BatchApply(self.belief_decoder)(belief_list)
self.pred_states = self.pred_states * stds['s'] + means['s']
示例15: flat_reduce
# 需要导入模块: import sonnet [as 别名]
# 或者: from sonnet import BatchFlatten [as 别名]
def flat_reduce(tensor, reduce_type='sum', final_reduce='mean'):
"""Flattens the tensor and reduces it."""
def _reduce(tensor, how, *args):
return getattr(tf, 'reduce_{}'.format(how))(tensor, *args) # pylint:disable=not-callable
tensor = snt.BatchFlatten()(tensor)
tensor = _reduce(tensor, reduce_type, -1)
if final_reduce is not None:
tensor = _reduce(tensor, final_reduce)
return tensor