当前位置: 首页>>代码示例>>Python>>正文


Python dataset_utils.has_labels方法代码示例

本文整理汇总了Python中slim.datasets.dataset_utils.has_labels方法的典型用法代码示例。如果您正苦于以下问题:Python dataset_utils.has_labels方法的具体用法?Python dataset_utils.has_labels怎么用?Python dataset_utils.has_labels使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在slim.datasets.dataset_utils的用法示例。


在下文中一共展示了dataset_utils.has_labels方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_split

# 需要导入模块: from slim.datasets import dataset_utils [as 别名]
# 或者: from slim.datasets.dataset_utils import has_labels [as 别名]
def get_split(split_name, dataset_dir, file_pattern=None, reader=None):
  """Gets a dataset tuple with instructions for reading MNIST.

  Args:
    split_name: A train/test split name.
    dataset_dir: The base directory of the dataset sources.

  Returns:
    A `Dataset` namedtuple.

  Raises:
    ValueError: if `split_name` is not a valid train/test split.
  """
  if split_name not in _SPLITS_TO_SIZES:
    raise ValueError('split name %s was not recognized.' % split_name)

  if not file_pattern:
    file_pattern = _FILE_PATTERN
  file_pattern = os.path.join(dataset_dir, file_pattern % split_name)

  # Allowing None in the signature so that dataset_factory can use the default.
  if reader is None:
    reader = tf.TFRecordReader

  keys_to_features = {
      'image/encoded':
          tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format':
          tf.FixedLenFeature((), tf.string, default_value='png'),
      'image/class/label':
          tf.FixedLenFeature(
              [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)),
  }

  items_to_handlers = {
      'image': slim.tfexample_decoder.Image(shape=[32, 32, 3], channels=3),
      'label': slim.tfexample_decoder.Tensor('image/class/label', shape=[]),
  }

  decoder = slim.tfexample_decoder.TFExampleDecoder(
      keys_to_features, items_to_handlers)

  labels_to_names = None
  if dataset_utils.has_labels(dataset_dir):
    labels_to_names = dataset_utils.read_label_file(dataset_dir)

  return slim.dataset.Dataset(
      data_sources=file_pattern,
      reader=reader,
      decoder=decoder,
      num_samples=_SPLITS_TO_SIZES[split_name],
      num_classes=_NUM_CLASSES,
      items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
      labels_to_names=labels_to_names) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:56,代码来源:mnist_m.py

示例2: get_split

# 需要导入模块: from slim.datasets import dataset_utils [as 别名]
# 或者: from slim.datasets.dataset_utils import has_labels [as 别名]
def get_split(split_name, dataset_dir, file_pattern=None, reader=None):
  """Gets a dataset tuple with instructions for reading flowers.

  Args:
    split_name: A train/validation split name.
    dataset_dir: The base directory of the dataset sources.
    file_pattern: The file pattern to use when matching the dataset sources.
      It is assumed that the pattern contains a '%s' string so that the split
      name can be inserted.
    reader: The TensorFlow reader type.

  Returns:
    A `Dataset` namedtuple.

  Raises:
    ValueError: if `split_name` is not a valid train/validation split.
  """
  if split_name not in SPLITS_TO_SIZES:
    raise ValueError('split name %s was not recognized.' % split_name)

  if not file_pattern:
    file_pattern = _FILE_PATTERN
  file_pattern = os.path.join(dataset_dir, file_pattern % split_name)

  # Allowing None in the signature so that dataset_factory can use the default.
  if reader is None:
    reader = tf.TFRecordReader

  keys_to_features = {
      'image/encoded': tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format': tf.FixedLenFeature((), tf.string, default_value='png'),
      'image/class/label': tf.FixedLenFeature(
          [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)),
  }

  items_to_handlers = {
      'image': slim.tfexample_decoder.Image(),
      'label': slim.tfexample_decoder.Tensor('image/class/label'),
  }

  decoder = slim.tfexample_decoder.TFExampleDecoder(
      keys_to_features, items_to_handlers)

  labels_to_names = None
  if dataset_utils.has_labels(dataset_dir):
    labels_to_names = dataset_utils.read_label_file(dataset_dir)

  return slim.dataset.Dataset(
      data_sources=file_pattern,
      reader=reader,
      decoder=decoder,
      num_samples=SPLITS_TO_SIZES[split_name],
      items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
      num_classes=_NUM_CLASSES,
      labels_to_names=labels_to_names) 
开发者ID:anthonyhu,项目名称:tumblr-emotions,代码行数:57,代码来源:flowers.py


注:本文中的slim.datasets.dataset_utils.has_labels方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。