本文整理汇总了Python中skopt.space.Integer方法的典型用法代码示例。如果您正苦于以下问题:Python space.Integer方法的具体用法?Python space.Integer怎么用?Python space.Integer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skopt.space
的用法示例。
在下文中一共展示了space.Integer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: bayes_search
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def bayes_search(self, **kwargs):
"""
Grid search using skopt.BayesSearchCV
Any parameters typically associated with BayesSearchCV (see
Scikit-Optimize documentation) can be passed as keyword arguments to
this function.
The final dictionary used for the grid search is saved to
`self.bayes_search_params`. This is updated with any parameters that
are passed.
Examples
--------
# Passing kwargs.
self.bayes_search(search_spaces={'max_depth':Integer(4, 6)}, refit=True)
"""
self.bayes_search_params.update(kwargs)
self.bayes_search_ = BayesSearchCV(**self.bayes_search_params)
self.bayes_search_.fit(self.x_train, self.transformed_y_train)
return self.bayes_search_
示例2: test_dimension_name
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_dimension_name():
notnames = [1, 1., True]
for n in notnames:
with pytest.raises(ValueError) as exc:
real = Real(1, 2, name=n)
assert("Dimension's name must be either string or"
"None." == exc.value.args[0])
s = Space([Real(1, 2, name="a"),
Integer(1, 100, name="b"),
Categorical(["red, blue"], name="c")])
assert s["a"] == (0, s.dimensions[0])
assert s["a", "c"] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
assert s[["a", "c"]] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
assert s[("a", "c")] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
assert s[0] == (0, s.dimensions[0])
assert s[0, "c"] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
assert s[0, 2] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
示例3: _knob_to_dimension
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def _knob_to_dimension(knob):
if isinstance(knob, CategoricalKnob):
return Categorical([x.value for x in knob.values])
elif isinstance(knob, IntegerKnob):
return Integer(knob.value_min, knob.value_max)
elif isinstance(knob, FloatKnob):
if knob.is_exp:
# Avoid error in skopt when low/high are 0
value_min = knob.value_min if knob.value_min != 0 else 1e-12
value_max = knob.value_max if knob.value_max != 0 else 1e-12
return Real(value_min, value_max, 'log-uniform')
else:
return Real(knob.value_min, knob.value_max, 'uniform')
else:
raise UnsupportedKnobError(knob.__class__)
示例4: _fit_svc
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def _fit_svc(n_jobs=1, n_points=1, cv=None):
"""
Utility function to fit a larger classification task with SVC
"""
X, y = make_classification(n_samples=1000, n_features=20, n_redundant=0,
n_informative=18, random_state=1,
n_clusters_per_class=1)
opt = BayesSearchCV(
SVC(),
{
'C': Real(1e-3, 1e+3, prior='log-uniform'),
'gamma': Real(1e-3, 1e+1, prior='log-uniform'),
'degree': Integer(1, 3),
},
n_jobs=n_jobs, n_iter=11, n_points=n_points, cv=cv,
random_state=42,
)
opt.fit(X, y)
assert opt.score(X, y) > 0.9
opt2 = BayesSearchCV(
SVC(),
{
'C': Real(1e-3, 1e+3, prior='log-uniform'),
'gamma': Real(1e-3, 1e+1, prior='log-uniform'),
'degree': Integer(1, 3),
},
n_jobs=n_jobs, n_iter=11, n_points=n_points, cv=cv,
random_state=42,
)
opt2.fit(X, y)
assert opt.score(X, y) == opt2.score(X, y)
示例5: test_searchcv_rank
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_searchcv_rank():
"""
Test whether results of BayesSearchCV can be reproduced with a fixed
random state.
"""
X, y = load_iris(True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, train_size=0.75, random_state=0
)
random_state = 42
opt = BayesSearchCV(
SVC(random_state=random_state),
{
'C': Real(1e-6, 1e+6, prior='log-uniform'),
'gamma': Real(1e-6, 1e+1, prior='log-uniform'),
'degree': Integer(1, 8),
'kernel': Categorical(['linear', 'poly', 'rbf']),
},
n_iter=11, random_state=random_state, return_train_score=True
)
opt.fit(X_train, y_train)
results = opt.cv_results_
test_rank = np.asarray(rankdata(-np.array(results["mean_test_score"]),
method='min'), dtype=np.int32)
train_rank = np.asarray(rankdata(-np.array(results["mean_train_score"]),
method='min'), dtype=np.int32)
assert_array_equal(np.array(results['rank_test_score']), test_rank)
assert_array_equal(np.array(results['rank_train_score']), train_rank)
示例6: test_dimensions
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_dimensions():
check_dimension(Real, (1., 4.), 2.251066014107722)
check_dimension(Real, (1, 4), 2.251066014107722)
check_dimension(Integer, (1, 4), 2)
check_dimension(Integer, (1., 4.), 2)
check_dimension(Integer, (1, 4), 2)
check_categorical(("a", "b", "c", "d"), "b")
check_categorical((1., 2., 3., 4.), 2.)
check_categorical((1, 2, 3, 4), 2)
示例7: test_integer
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_integer():
a = Integer(1, 10)
for i in range(50):
r = a.rvs(random_state=i)
assert 1 <= r
assert 11 >= r
assert r in a
random_values = a.rvs(random_state=0, n_samples=10)
assert_array_equal(random_values.shape, (10))
assert_array_equal(a.transform(random_values), random_values)
assert_array_equal(a.inverse_transform(random_values), random_values)
示例8: test_normalize_types
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_normalize_types():
# can you pass a Space instance to the Space constructor?
space = Space([(0.0, 1.0), Integer(-5, 5, dtype=int), (True, False)])
space.set_transformer("normalize")
X = [[0., -5, False]]
Xt = np.zeros((1, 3))
assert_array_equal(space.transform(X), Xt)
assert_array_equal(space.inverse_transform(Xt), X)
assert_array_equal(space.inverse_transform(space.transform(X)), X)
assert isinstance(space.inverse_transform(Xt)[0][0], float)
assert isinstance(space.inverse_transform(Xt)[0][1], int)
assert isinstance(space.inverse_transform(Xt)[0][2], (np.bool_, bool))
示例9: test_valid_transformation
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_valid_transformation():
check_valid_transformation(Integer)
check_valid_transformation(Real)
示例10: test_integer_distance
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_integer_distance():
ints = Integer(1, 10)
for i in range(1, 10+1):
assert_equal(ints.distance(4, i), abs(4 - i))
示例11: test_integer_distance_out_of_range
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_integer_distance_out_of_range():
ints = Integer(1, 10)
assert_raises_regex(RuntimeError, "compute distance for values within",
ints.distance, 11, 10)
示例12: test_space_from_yaml
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_space_from_yaml():
with NamedTemporaryFile(delete=False) as tmp:
tmp.write(b"""
Space:
- Real:
low: 0.0
high: 1.0
- Integer:
low: -5
high: 5
- Categorical:
categories:
- a
- b
- c
- Real:
low: 1.0
high: 5.0
prior: log-uniform
- Categorical:
categories:
- e
- f
""")
tmp.flush()
space = Space([(0.0, 1.0),
(-5, 5),
("a", "b", "c"),
(1.0, 5.0, "log-uniform"),
("e", "f")])
space2 = Space.from_yaml(tmp.name)
assert_equal(space, space2)
tmp.close()
os.unlink(tmp.name)
示例13: test_space_names_in_use_named_args
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_space_names_in_use_named_args():
space = [Integer(250, 2000, name='n_estimators')]
@use_named_args(space)
def objective(n_estimators):
return n_estimators
res = gp_minimize(objective, space, n_calls=10, random_state=0)
best_params = dict(zip((s.name for s in res.space), res.x))
assert 'n_estimators' in best_params
assert res.space.dimensions[0].name == 'n_estimators'
示例14: __init__
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def __init__(self, configspace, **kwargs):
super().__init__(
configspace, reward_attribute=kwargs.get('reward_attribute'))
self.hp_ordering = configspace.get_hyperparameter_names() # fix order of hyperparams in configspace.
skopt_hpspace = []
for hp in self.hp_ordering:
hp_obj = configspace.get_hyperparameter(hp)
hp_type = str(type(hp_obj)).lower() # type of hyperparam
if 'integer' in hp_type:
hp_dimension = Integer(low=int(hp_obj.lower), high=int(hp_obj.upper),name=hp)
elif 'float' in hp_type:
if hp_obj.log: # log10-scale hyperparmeter
hp_dimension = Real(low=float(hp_obj.lower), high=float(hp_obj.upper), prior='log-uniform', name=hp)
else:
hp_dimension = Real(low=float(hp_obj.lower), high=float(hp_obj.upper), name=hp)
elif 'categorical' in hp_type:
hp_dimension = Categorical(hp_obj.choices, name=hp)
elif 'ordinal' in hp_type:
hp_dimension = Categorical(hp_obj.sequence, name=hp)
else:
raise ValueError("unknown hyperparameter type: %s" % hp)
skopt_hpspace.append(hp_dimension)
skopt_keys = {
'base_estimator', 'n_random_starts', 'n_initial_points',
'acq_func', 'acq_optimizer', 'random_state', 'model_queue_size',
'acq_func_kwargs', 'acq_optimizer_kwargs'}
skopt_kwargs = self._filter_skopt_kwargs(kwargs, skopt_keys)
self.bayes_optimizer = Optimizer(
dimensions=skopt_hpspace, **skopt_kwargs)
示例15: test_searchcv_runs
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Integer [as 别名]
def test_searchcv_runs(surrogate, n_jobs, n_points, cv=None):
"""
Test whether the cross validation search wrapper around sklearn
models runs properly with available surrogates and with single
or multiple workers and different number of parameter settings
to ask from the optimizer in parallel.
Parameters
----------
* `surrogate` [str or None]:
A class of the scikit-optimize surrogate used. None means
to use default surrogate.
* `n_jobs` [int]:
Number of parallel processes to use for computations.
"""
X, y = load_iris(True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, train_size=0.75, random_state=0
)
# create an instance of a surrogate if it is not a string
if surrogate is not None:
optimizer_kwargs = {'base_estimator': surrogate}
else:
optimizer_kwargs = None
opt = BayesSearchCV(
SVC(),
{
'C': Real(1e-6, 1e+6, prior='log-uniform'),
'gamma': Real(1e-6, 1e+1, prior='log-uniform'),
'degree': Integer(1, 8),
'kernel': Categorical(['linear', 'poly', 'rbf']),
},
n_jobs=n_jobs, n_iter=11, n_points=n_points, cv=cv,
optimizer_kwargs=optimizer_kwargs
)
opt.fit(X_train, y_train)
# this normally does not hold only if something is wrong
# with the optimizaiton procedure as such
assert opt.score(X_test, y_test) > 0.9