本文整理汇总了Python中skopt.space.Categorical方法的典型用法代码示例。如果您正苦于以下问题:Python space.Categorical方法的具体用法?Python space.Categorical怎么用?Python space.Categorical使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skopt.space
的用法示例。
在下文中一共展示了space.Categorical方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_dimensions_names
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_dimensions_names():
from skopt.space import Real, Categorical, Integer
# create search space and optimizer
space = [Real(0, 1, name='real'),
Categorical(['a', 'b', 'c'], name='cat'),
Integer(0, 1, name='int')]
opt = Optimizer(space, n_initial_points=1)
# result of the optimizer missing dimension names
result = opt.tell([(0.5, 'a', 0.5)], [3])
names = []
for d in result.space.dimensions:
names.append(d.name)
assert len(names) == 3
assert "real" in names
assert "cat" in names
assert "int" in names
assert None not in names
示例2: test_categorical_only
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_categorical_only():
from skopt.space import Categorical
cat1 = Categorical([2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
cat2 = Categorical([2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
opt = Optimizer([cat1, cat2])
for n in range(15):
x = opt.ask()
res = opt.tell(x, 12 * n)
assert len(res.x_iters) == 15
next_x = opt.ask(n_points=4)
assert len(next_x) == 4
cat3 = Categorical(["2", "3", "4", "5", "6", "7", "8", "9", "10", "11"])
cat4 = Categorical(["2", "3", "4", "5", "6", "7", "8", "9", "10", "11"])
opt = Optimizer([cat3, cat4])
for n in range(15):
x = opt.ask()
res = opt.tell(x, 12 * n)
assert len(res.x_iters) == 15
next_x = opt.ask(n_points=4)
assert len(next_x) == 4
示例3: test_categorical_only2
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_categorical_only2():
from numpy import linalg
from skopt.space import Categorical
from skopt.learning import GaussianProcessRegressor
space = [Categorical([1, 2, 3]), Categorical([4, 5, 6])]
opt = Optimizer(space,
base_estimator=GaussianProcessRegressor(alpha=1e-7),
acq_optimizer='lbfgs',
n_initial_points=10,
n_jobs=2)
next_x = opt.ask(n_points=4)
assert len(next_x) == 4
opt.tell(next_x, [linalg.norm(x) for x in next_x])
next_x = opt.ask(n_points=4)
assert len(next_x) == 4
opt.tell(next_x, [linalg.norm(x) for x in next_x])
next_x = opt.ask(n_points=4)
assert len(next_x) == 4
示例4: test_set_get_transformer
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_set_get_transformer():
# can you pass a Space instance to the Space constructor?
space = Space([(0.0, 1.0), (-5, 5),
("a", "b", "c"), (1.0, 5.0, "log-uniform"), ("e", "f")])
transformer = space.get_transformer()
assert_array_equal(["identity", "identity", "onehot",
"identity", "onehot"], transformer)
space.set_transformer("normalize")
transformer = space.get_transformer()
assert_array_equal(["normalize"] * 5, transformer)
space.set_transformer(transformer)
assert_array_equal(transformer, space.get_transformer())
space.set_transformer_by_type("label", Categorical)
assert space.dimensions[2].transform(["a"]) == [0]
示例5: test_dimension_name
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_dimension_name():
notnames = [1, 1., True]
for n in notnames:
with pytest.raises(ValueError) as exc:
real = Real(1, 2, name=n)
assert("Dimension's name must be either string or"
"None." == exc.value.args[0])
s = Space([Real(1, 2, name="a"),
Integer(1, 100, name="b"),
Categorical(["red, blue"], name="c")])
assert s["a"] == (0, s.dimensions[0])
assert s["a", "c"] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
assert s[["a", "c"]] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
assert s[("a", "c")] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
assert s[0] == (0, s.dimensions[0])
assert s[0, "c"] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
assert s[0, 2] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
示例6: _knob_to_dimension
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def _knob_to_dimension(knob):
if isinstance(knob, CategoricalKnob):
return Categorical([x.value for x in knob.values])
elif isinstance(knob, IntegerKnob):
return Integer(knob.value_min, knob.value_max)
elif isinstance(knob, FloatKnob):
if knob.is_exp:
# Avoid error in skopt when low/high are 0
value_min = knob.value_min if knob.value_min != 0 else 1e-12
value_max = knob.value_max if knob.value_max != 0 else 1e-12
return Real(value_min, value_max, 'log-uniform')
else:
return Real(knob.value_min, knob.value_max, 'uniform')
else:
raise UnsupportedKnobError(knob.__class__)
示例7: test_searchcv_rank
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_searchcv_rank():
"""
Test whether results of BayesSearchCV can be reproduced with a fixed
random state.
"""
X, y = load_iris(True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, train_size=0.75, random_state=0
)
random_state = 42
opt = BayesSearchCV(
SVC(random_state=random_state),
{
'C': Real(1e-6, 1e+6, prior='log-uniform'),
'gamma': Real(1e-6, 1e+1, prior='log-uniform'),
'degree': Integer(1, 8),
'kernel': Categorical(['linear', 'poly', 'rbf']),
},
n_iter=11, random_state=random_state, return_train_score=True
)
opt.fit(X_train, y_train)
results = opt.cv_results_
test_rank = np.asarray(rankdata(-np.array(results["mean_test_score"]),
method='min'), dtype=np.int32)
train_rank = np.asarray(rankdata(-np.array(results["mean_train_score"]),
method='min'), dtype=np.int32)
assert_array_equal(np.array(results['rank_test_score']), test_rank)
assert_array_equal(np.array(results['rank_train_score']), train_rank)
示例8: check_categorical
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def check_categorical(vals, random_val):
x = Categorical(vals)
assert_equal(x, Categorical(vals))
assert x != Categorical(vals[:-1] + ("zzz",))
assert_equal(x.rvs(random_state=1), random_val)
示例9: test_categorical_transform
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_categorical_transform():
categories = ["apple", "orange", "banana", None, True, False, 3]
cat = Categorical(categories)
apple = [1., 0., 0., 0., 0., 0., 0.]
orange = [0., 1.0, 0.0, 0.0, 0., 0., 0.]
banana = [0., 0., 1., 0., 0., 0., 0.]
none = [0., 0., 0., 1., 0., 0., 0.]
true = [0., 0., 0., 0., 1., 0., 0.]
false = [0., 0., 0., 0., 0., 1., 0.]
three = [0., 0., 0., 0., 0., 0., 1.]
assert_equal(cat.transformed_size, 7)
assert_equal(cat.transformed_size, cat.transform(["apple"]).size)
assert_array_equal(
cat.transform(categories),
[apple, orange, banana, none, true, false, three]
)
assert_array_equal(cat.transform(["apple", "orange"]), [apple, orange])
assert_array_equal(cat.transform(["apple", "banana"]), [apple, banana])
assert_array_equal(cat.inverse_transform([apple, orange]),
["apple", "orange"])
assert_array_equal(cat.inverse_transform([apple, banana]),
["apple", "banana"])
ent_inverse = cat.inverse_transform(
[apple, orange, banana, none, true, false, three])
assert_array_equal(ent_inverse, categories)
示例10: test_categorical_transform_binary
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_categorical_transform_binary():
categories = ["apple", "orange"]
cat = Categorical(categories)
apple = [0.]
orange = [1.]
assert_equal(cat.transformed_size, 1)
assert_equal(cat.transformed_size, cat.transform(["apple"]).size)
assert_array_equal(cat.transform(categories), [apple, orange])
assert_array_equal(cat.transform(["apple", "orange"]), [apple, orange])
assert_array_equal(cat.inverse_transform([apple, orange]),
["apple", "orange"])
ent_inverse = cat.inverse_transform([apple, orange])
assert_array_equal(ent_inverse, categories)
示例11: test_normalize_categorical
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_normalize_categorical():
categories = ["cat", "dog", "rat"]
a = Categorical(categories, transform="normalize")
for i in range(len(categories)):
assert a.rvs(random_state=i)[0] in categories
assert a.inverse_transform([0.]) == [categories[0]]
assert a.inverse_transform([0.5]) == [categories[1]]
assert a.inverse_transform([1.0]) == [categories[2]]
assert_array_equal(categories, a.inverse_transform([0., 0.5, 1]))
categories = [1, 2, 3]
a = Categorical(categories, transform="normalize")
assert_array_equal(categories, np.sort(np.unique(a.rvs(100,
random_state=1))))
assert_array_equal(categories, a.inverse_transform([0., 0.5, 1.]))
categories = [1., 2., 3.]
a = Categorical(categories, transform="normalize")
assert_array_equal(categories, np.sort(np.unique(a.rvs(100,
random_state=1))))
assert_array_equal(categories, a.inverse_transform([0., 0.5, 1.]))
categories = [1, 2, 3]
a = Categorical(categories, transform="string")
a.set_transformer("normalize")
assert_array_equal(categories, np.sort(np.unique(a.rvs(100,
random_state=1))))
assert_array_equal(categories, a.inverse_transform([0., 0.5, 1.]))
示例12: test_categorical_identity
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_categorical_identity():
categories = ["cat", "dog", "rat"]
cat = Categorical(categories, transform="identity")
samples = cat.rvs(100)
assert all([t in categories for t in cat.rvs(100)])
transformed = cat.transform(samples)
assert_array_equal(transformed, samples)
assert_array_equal(samples, cat.inverse_transform(transformed))
示例13: test_categorical_string
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_categorical_string():
categories = [1, 2, 3]
categories_transformed = ["1", "2", "3"]
cat = Categorical(categories, transform="string")
samples = cat.rvs(100)
assert all([t in categories for t in cat.rvs(100)])
transformed = cat.transform(samples)
assert all([t in categories_transformed for t in transformed])
assert_array_equal(samples, cat.inverse_transform(transformed))
示例14: test_space_from_yaml
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_space_from_yaml():
with NamedTemporaryFile(delete=False) as tmp:
tmp.write(b"""
Space:
- Real:
low: 0.0
high: 1.0
- Integer:
low: -5
high: 5
- Categorical:
categories:
- a
- b
- c
- Real:
low: 1.0
high: 5.0
prior: log-uniform
- Categorical:
categories:
- e
- f
""")
tmp.flush()
space = Space([(0.0, 1.0),
(-5, 5),
("a", "b", "c"),
(1.0, 5.0, "log-uniform"),
("e", "f")])
space2 = Space.from_yaml(tmp.name)
assert_equal(space, space2)
tmp.close()
os.unlink(tmp.name)
示例15: test_purely_categorical_space
# 需要导入模块: from skopt import space [as 别名]
# 或者: from skopt.space import Categorical [as 别名]
def test_purely_categorical_space():
# Test reproduces the bug in #908, make sure it doesn't come back
dims = [Categorical(['a', 'b', 'c']), Categorical(['A', 'B', 'C'])]
optimizer = Optimizer(dims, n_initial_points=1, random_state=3)
x = optimizer.ask()
# before the fix this call raised an exception
optimizer.tell(x, 1.)