当前位置: 首页>>代码示例>>Python>>正文


Python validation.column_or_1d方法代码示例

本文整理汇总了Python中sklearn.utils.validation.column_or_1d方法的典型用法代码示例。如果您正苦于以下问题:Python validation.column_or_1d方法的具体用法?Python validation.column_or_1d怎么用?Python validation.column_or_1d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.utils.validation的用法示例。


在下文中一共展示了validation.column_or_1d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: is_constant

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def is_constant(x):
    """Test ``x`` for constancy.

    Determine whether a vector is composed of all of the same elements
    and nothing else.

    Parameters
    ----------
    x : array-like, shape=(n_samples,)
        The time series vector.

    Examples
    --------
    >>> import numpy as np
    >>> x = np.array([1, 2, 3])
    >>> y = np.ones(3)
    >>> [is_constant(x), is_constant(y)]
    [False, True]
    """
    x = column_or_1d(x)  # type: np.ndarray
    return (x == x[0]).all() 
开发者ID:alkaline-ml,项目名称:pmdarima,代码行数:23,代码来源:utils.py

示例2: fit

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def fit(self, y):
        """Fit label encoder

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Target values.

        Returns
        -------
        self : returns an instance of self.
        """
        y = column_or_1d(y, warn=True)
        y = numpy.append(y, ['UNK'])
        self.classes_ = numpy.unique(y)
        return self 
开发者ID:bjherger,项目名称:keras-pandas,代码行数:18,代码来源:transformations.py

示例3: fit_transform

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def fit_transform(self, y, **kwargs):
        """Fit label encoder and return encoded labels

        Parameters
        ----------
        y : array-like of shape [n_samples]
            Target values.

        Returns
        -------
        y : array-like of shape [n_samples]
        :param **kwargs:
        """
        y = column_or_1d(y, warn=True)
        y = numpy.append(y, ['UNK'])
        self.classes_, y = numpy.unique(y, return_inverse=True)
        return y 
开发者ID:bjherger,项目名称:keras-pandas,代码行数:19,代码来源:transformations.py

示例4: transform

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def transform(self, y):
        """Transform labels to normalized encoding.

        Parameters
        ----------
        y : array-like of shape [n_samples]
            Target values.

        Returns
        -------
        y : array-like of shape [n_samples]
        """
        check_is_fitted(self, 'classes_')
        y = column_or_1d(y, warn=True)
        y = numpy.array(list(map(lambda x: x if x in self.classes_ else 'UNK', y)))

        classes = numpy.unique(y)
        if len(numpy.intersect1d(classes, self.classes_)) < len(classes):
            diff = numpy.setdiff1d(classes, self.classes_)
            raise ValueError("y contains new labels: %s" % str(diff))
        return numpy.searchsorted(self.classes_, y) 
开发者ID:bjherger,项目名称:keras-pandas,代码行数:23,代码来源:transformations.py

示例5: _train_predictor

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def _train_predictor(self, problem, classes=None, hyperparams=None):
        if problem == SupervisedLearningPipeline.CLASSIFICATION:
            if 'bifurcated' in hyperparams['algorithm']:
                learning_class = BifurcatedSupervisedClassifier
                # Strip 'bifurcated-' from algorithm for SupervisedClassifier.
                hyperparams['algorithm'] = '-'.join(hyperparams['algorithm'].split('-')[1:])
            else:
                learning_class = SupervisedClassifier

            self._predictor = learning_class(classes, hyperparams)
        elif problem == SupervisedLearningPipeline.REGRESSION:
            learning_class = Regressor
            self._predictor = learning_class(algorithm=algorithm)
        status = self._predictor.train(self._X_train, column_or_1d(self._y_train),
                                       groups = self._patIds_train)

        return status 
开发者ID:HealthRex,项目名称:CDSS,代码行数:19,代码来源:SupervisedLearningPipeline.py

示例6: setUp

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def setUp(self):
        log.level = logging.ERROR
        # Use simple classifier and test case for testing non-ROC analyses.
        X = RANDOM_10_TEST_CASE['X']
        y = RANDOM_10_TEST_CASE['y']
        self._list_classifier = ListPredictor([0, 1])
        self._lc_analyzer = ClassifierAnalyzer(self._list_classifier, X, y)

        # Use ml classifier and complex test case.
        X = RANDOM_100_TEST_CASE['X']
        y = RANDOM_100_TEST_CASE['y']
        # Generate train/test split.
        X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=123456789)
        # Train logistic regression model.
        hyperparams = {
            'algorithm': SupervisedClassifier.REGRESS_AND_ROUND,
            'random_state': 123456789
        }
        self._ml_classifier = SupervisedClassifier([0, 1], hyperparams)
        self._ml_classifier.train(X_train, column_or_1d(y_train))
        self._ml_analyzer = ClassifierAnalyzer(self._ml_classifier, X_test, y_test) 
开发者ID:HealthRex,项目名称:CDSS,代码行数:23,代码来源:TestClassifierAnalyzer.py

示例7: _select_features

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def _select_features(self):
        # Use FeatureSelector to prune all but 100 variables.
        fs = FeatureSelector(algorithm=FeatureSelector.RECURSIVE_ELIMINATION, \
            problem=FeatureSelector.CLASSIFICATION)

        fs.set_input_matrix(self._X_train, column_or_1d(self._y_train))
        num_features_to_select = int(0.01*len(self._X_train.columns.values))
        fs.select(k=num_features_to_select)

        # Enumerate eliminated features pre-transformation.
        self._feature_ranks = fs.compute_ranks()
        for i in range(len(self._feature_ranks)):
            if self._feature_ranks[i] > num_features_to_select:
                self._eliminated_features.append(self._X_train.columns[i])

        self._X_train = fs.transform_matrix(self._X_train)
        self._X_test = fs.transform_matrix(self._X_test) 
开发者ID:HealthRex,项目名称:CDSS,代码行数:19,代码来源:ConditionMortalityPredictor.py

示例8: _validate

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def _validate(self, y):
        """Validates input time series. Also adjusts box_cox if necessary."""
        try:
            y = c1d(check_array(y, ensure_2d=False, force_all_finite=True, ensure_min_samples=1,
                                copy=True, dtype=np.float64))  # type: np.ndarray
        except Exception as validation_exception:
            self.context.get_exception_handler().exception(
                "y series is invalid", error.InputArgsException, previous_exception=validation_exception
            )
            return False

        if np.any(y <= 0):
            if self.use_box_cox is True:
                self.context.get_exception_handler().warn(
                    "Box-Cox transformation (use_box_cox) was forced to True "
                    "but there are negative values in input series. "
                    "Setting use_box_cox to False.",
                    error.InputArgsWarning
                )
            self.use_box_cox = False

        return y 
开发者ID:intive-DataScience,项目名称:tbats,代码行数:24,代码来源:Estimator.py

示例9: as_series

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def as_series(x):
    """Cast as pandas Series.

    Cast an iterable to a Pandas Series object. Note that the index
    will simply be a positional ``arange`` and cannot be set in this
    function.

    Parameters
    ----------
    x : array-like, shape=(n_samples,)
        The 1d array on which to compute the auto correlation.

    Examples
    --------
    >>> as_series([1, 2, 3])
    0    1
    1    2
    2    3
    dtype: int64

    >>> as_series(as_series((1, 2, 3)))
    0    1
    1    2
    2    3
    dtype: int64

    >>> import pandas as pd
    >>> as_series(pd.Series([4, 5, 6], index=['a', 'b', 'c']))
    a    4
    b    5
    c    6
    dtype: int64

    Returns
    -------
    s : pd.Series
        A pandas Series object.
    """
    if isinstance(x, pd.Series):
        return x
    return pd.Series(column_or_1d(x)) 
开发者ID:alkaline-ml,项目名称:pmdarima,代码行数:43,代码来源:array.py

示例10: check_endog

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def check_endog(y, dtype=DTYPE, copy=True, force_all_finite=False):
    """Wrapper for ``check_array`` and ``column_or_1d`` from sklearn

    Parameters
    ----------
    y : array-like, shape=(n_samples,)
        The 1d endogenous array.

    dtype : string, type or None (default=np.float64)
        Data type of result. If None, the dtype of the input is preserved.
        If "numeric", dtype is preserved unless array.dtype is object.

    copy : bool, optional (default=False)
        Whether a forced copy will be triggered. If copy=False, a copy might
        still be triggered by a conversion.

    force_all_finite : bool, optional (default=False)
        Whether to raise an error on np.inf and np.nan in an array. The
        possibilities are:

        - True: Force all values of array to be finite.
        - False: accept both np.inf and np.nan in array.

    Returns
    -------
    y : np.ndarray, shape=(n_samples,)
        A 1d numpy ndarray
    """
    return column_or_1d(
        check_array(y, ensure_2d=False, force_all_finite=force_all_finite,
                    copy=copy, dtype=dtype))  # type: np.ndarray 
开发者ID:alkaline-ml,项目名称:pmdarima,代码行数:33,代码来源:array.py

示例11: fit

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def fit(self, y):
        """Fit label encoder.

        Parameters
        ----------
        y : array-like of shape (n_samples,)
            Label values.

        Returns
        -------
        self : RobustLabelEncoder.
        """
        y = column_or_1d(y, warn=True)
        self.classes_ = self._check_labels_and_sort() or _encode(y)
        return self 
开发者ID:aws,项目名称:sagemaker-scikit-learn-extension,代码行数:17,代码来源:encoders.py

示例12: transform

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def transform(self, y):
        """Transform labels to normalized encoding.

        If ``self.fill_unseen_labels`` is ``True``, use ``self.fill_encoded_label_value`` for unseen values.
        Seen labels are encoded with value between 0 and n_classes-1.  Unseen labels are encoded with
        ``self.fill_encoded_label_value`` with a default value of n_classes.

        Parameters
        ----------
        y : array-like of shape [n_samples]
            Label values.

        Returns
        -------
        y_encoded : array-like of shape [n_samples]
                    Encoded label values.
        """
        check_is_fitted(self, "classes_")
        y = column_or_1d(y, warn=True)

        # transform of empty array is empty array
        if _num_samples(y) == 0:
            return np.array([])

        if self.fill_unseen_labels:
            _, mask = _encode_check_unknown(y, self.classes_, return_mask=True)
            y_encoded = np.searchsorted(self.classes_, y)
            fill_encoded_label_value = self.fill_encoded_label_value or len(self.classes_)
            y_encoded[~mask] = fill_encoded_label_value
        else:
            _, y_encoded = _encode(y, uniques=self.classes_, encode=True)

        return y_encoded 
开发者ID:aws,项目名称:sagemaker-scikit-learn-extension,代码行数:35,代码来源:encoders.py

示例13: inverse_transform

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def inverse_transform(self, y):
        """Transform labels back to original encoding.

        If ``self.fill_unseen_labels`` is ``True``, use ``self.fill_label_value`` for unseen values.

        Parameters
        ----------
        y : numpy array of shape [n_samples]
            Encoded label values.

        Returns
        -------
        y_decoded : numpy array of shape [n_samples]
                    Label values.
        """
        check_is_fitted(self, "classes_")
        y = column_or_1d(y, warn=True)

        if y.dtype.kind not in ("i", "u"):
            try:
                y = y.astype(np.float).astype(np.int)
            except ValueError:
                raise ValueError("`y` contains values not convertible to integer.")

        # inverse transform of empty array is empty array
        if _num_samples(y) == 0:
            return np.array([])

        labels = np.arange(len(self.classes_))
        diff = np.setdiff1d(y, labels)

        if diff and not self.fill_unseen_labels:
            raise ValueError("y contains previously unseen labels: %s" % str(diff))

        y_decoded = [self.classes_[idx] if idx in labels else self.fill_label_value for idx in y]
        return y_decoded 
开发者ID:aws,项目名称:sagemaker-scikit-learn-extension,代码行数:38,代码来源:encoders.py

示例14: _maybe_reshape_y

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def _maybe_reshape_y(self, y):
        # If necessary, reshape y from (n_samples, 1) to (n_samples, )
        try:
            num_cols = y.shape[1]
            y = column_or_1d(y)
            log.debug('Reshaped y to 1d.')
        except IndexError:
            log.debug('Did not need to reshape y to 1d.')

        return y 
开发者ID:HealthRex,项目名称:CDSS,代码行数:12,代码来源:SupervisedClassifier.py

示例15: check_inputs

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import column_or_1d [as 别名]
def check_inputs(X, y, sample_weight=None, ensure_2d=True):
    """Input validation for debiasing algorithms.

    Checks all inputs for consistent length, validates shapes (optional for X),
    and returns an array of all ones if sample_weight is ``None``.

    Args:
        X (array-like): Input data.
        y (array-like, shape = (n_samples,)): Target values.
        sample_weight (array-like, optional): Sample weights.
        ensure_2d (bool, optional): Whether to raise a ValueError if X is not
            2D.

    Returns:
        tuple:

            * **X** (`array-like`) -- Validated X. Unchanged.

            * **y** (`array-like`) -- Validated y. Possibly converted to 1D if
              not a :class:`pandas.Series`.
            * **sample_weight** (`array-like`) -- Validated sample_weight. If no
              sample_weight is provided, returns a consistent-length array of
              ones.
    """
    if ensure_2d and X.ndim != 2:
        raise ValueError("Expected X to be 2D, got ndim == {} instead.".format(
                X.ndim))
    if not isinstance(y, pd.Series):  # don't cast Series -> ndarray
        y = column_or_1d(y)
    if sample_weight is not None:
        sample_weight = column_or_1d(sample_weight)
    else:
        sample_weight = np.ones(X.shape[0])
    check_consistent_length(X, y, sample_weight)
    return X, y, sample_weight 
开发者ID:IBM,项目名称:AIF360,代码行数:37,代码来源:utils.py


注:本文中的sklearn.utils.validation.column_or_1d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。