当前位置: 首页>>代码示例>>Python>>正文


Python validation.check_random_state方法代码示例

本文整理汇总了Python中sklearn.utils.validation.check_random_state方法的典型用法代码示例。如果您正苦于以下问题:Python validation.check_random_state方法的具体用法?Python validation.check_random_state怎么用?Python validation.check_random_state使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.utils.validation的用法示例。


在下文中一共展示了validation.check_random_state方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: endless_permutations

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def endless_permutations(N, random_state=None):
    """
    Generate an endless sequence of random integers from permutations of the
    set [0, ..., N).

    If we call this N times, we will sweep through the entire set without
    replacement, on the (N+1)th call a new permutation will be created, etc.

    Parameters
    ----------
    N: int
        the length of the set
    random_state: int or RandomState, optional
        random seed

    Yields
    ------
    int:
        a random int from the set [0, ..., N)
    """
    generator = check_random_state(random_state)
    while True:
        batch_inds = generator.permutation(N)
        for b in batch_inds:
            yield b 
开发者ID:NICTA,项目名称:revrand,代码行数:27,代码来源:rand.py

示例2: test_parallel_train

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def test_parallel_train():
    rng = check_random_state(12321)
    n_samples, n_features = 80, 30
    X_train = rng.randn(n_samples, n_features)
    y_train = rng.randint(0, 2, n_samples)

    clfs = [
        RandomForestClassifier(n_estimators=20, n_jobs=n_jobs,
                               random_state=12345).fit(X_train, y_train)
        for n_jobs in [1, 2, 3, 8, 16, 32]
    ]

    X_test = rng.randn(n_samples, n_features)
    probas = [clf.predict_proba(X_test) for clf in clfs]
    for proba1, proba2 in zip(probas, probas[1:]):
        assert_array_almost_equal(proba1, proba2) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:18,代码来源:test_forest.py

示例3: check_zero_or_all_relevant_labels

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def check_zero_or_all_relevant_labels(lrap_score):
    random_state = check_random_state(0)

    for n_labels in range(2, 5):
        y_score = random_state.uniform(size=(1, n_labels))
        y_score_ties = np.zeros_like(y_score)

        # No relevant labels
        y_true = np.zeros((1, n_labels))
        assert_equal(lrap_score(y_true, y_score), 1.)
        assert_equal(lrap_score(y_true, y_score_ties), 1.)

        # Only relevant labels
        y_true = np.ones((1, n_labels))
        assert_equal(lrap_score(y_true, y_score), 1.)
        assert_equal(lrap_score(y_true, y_score_ties), 1.)

    # Degenerate case: only one label
    assert_almost_equal(lrap_score([[1], [0], [1], [0]],
                                   [[0.5], [0.5], [0.5], [0.5]]), 1.) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:22,代码来源:test_ranking.py

示例4: check_alternative_lrap_implementation

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def check_alternative_lrap_implementation(lrap_score, n_classes=5,
                                          n_samples=20, random_state=0):
    _, y_true = make_multilabel_classification(n_features=1,
                                               allow_unlabeled=False,
                                               random_state=random_state,
                                               n_classes=n_classes,
                                               n_samples=n_samples)

    # Score with ties
    y_score = sparse_random_matrix(n_components=y_true.shape[0],
                                   n_features=y_true.shape[1],
                                   random_state=random_state)

    if hasattr(y_score, "toarray"):
        y_score = y_score.toarray()
    score_lrap = label_ranking_average_precision_score(y_true, y_score)
    score_my_lrap = _my_lrap(y_true, y_score)
    assert_almost_equal(score_lrap, score_my_lrap)

    # Uniform score
    random_state = check_random_state(random_state)
    y_score = random_state.uniform(size=(n_samples, n_classes))
    score_lrap = label_ranking_average_precision_score(y_true, y_score)
    score_my_lrap = _my_lrap(y_true, y_score)
    assert_almost_equal(score_lrap, score_my_lrap) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:27,代码来源:test_ranking.py

示例5: test_multilabel_sample_weight_invariance

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def test_multilabel_sample_weight_invariance(name):
    # multilabel indicator
    random_state = check_random_state(0)
    _, ya = make_multilabel_classification(n_features=1, n_classes=20,
                                           random_state=0, n_samples=100,
                                           allow_unlabeled=False)
    _, yb = make_multilabel_classification(n_features=1, n_classes=20,
                                           random_state=1, n_samples=100,
                                           allow_unlabeled=False)
    y_true = np.vstack([ya, yb])
    y_pred = np.vstack([ya, ya])
    y_score = random_state.randint(1, 4, size=y_true.shape)

    metric = ALL_METRICS[name]
    if name in THRESHOLDED_METRICS:
        check_sample_weight_invariance(name, metric, y_true, y_score)
    else:
        check_sample_weight_invariance(name, metric, y_true, y_pred) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:20,代码来源:test_common.py

示例6: test_multilabel_label_permutations_invariance

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def test_multilabel_label_permutations_invariance(name):
    random_state = check_random_state(0)
    n_samples, n_classes = 20, 4

    y_true = random_state.randint(0, 2, size=(n_samples, n_classes))
    y_score = random_state.randint(0, 2, size=(n_samples, n_classes))

    metric = ALL_METRICS[name]
    score = metric(y_true, y_score)

    for perm in permutations(range(n_classes), n_classes):
        y_score_perm = y_score[:, perm]
        y_true_perm = y_true[:, perm]

        current_score = metric(y_true_perm, y_score_perm)
        assert_almost_equal(score, current_score) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:18,代码来源:test_common.py

示例7: test_thresholded_multilabel_multioutput_permutations_invariance

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def test_thresholded_multilabel_multioutput_permutations_invariance(name):
    random_state = check_random_state(0)
    n_samples, n_classes = 20, 4
    y_true = random_state.randint(0, 2, size=(n_samples, n_classes))
    y_score = random_state.normal(size=y_true.shape)

    # Makes sure all samples have at least one label. This works around errors
    # when running metrics where average="sample"
    y_true[y_true.sum(1) == 4, 0] = 0
    y_true[y_true.sum(1) == 0, 0] = 1

    metric = ALL_METRICS[name]
    score = metric(y_true, y_score)

    for perm in permutations(range(n_classes), n_classes):
        y_score_perm = y_score[:, perm]
        y_true_perm = y_true[:, perm]

        current_score = metric(y_true_perm, y_score_perm)
        assert_almost_equal(score, current_score) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:22,代码来源:test_common.py

示例8: test_execute

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def test_execute():
    """Check executing the program works"""

    params = {'function_set': [add2, sub2, mul2, div2],
              'arities': {2: [add2, sub2, mul2, div2]},
              'init_depth': (2, 6),
              'init_method': 'half and half',
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)

    # Test for a small program
    test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
    X = np.reshape(random_state.uniform(size=50), (5, 10))
    gp = _Program(random_state=random_state, program=test_gp, **params)
    result = gp.execute(X)
    expected = [-0.19656208, 0.78197782, -1.70123845, -0.60175969, -0.01082618]
    assert_array_almost_equal(result, expected) 
开发者ID:trevorstephens,项目名称:gplearn,代码行数:23,代码来源:test_genetic.py

示例9: test_get_subtree

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def test_get_subtree():
    """Check that get subtree does the same thing for self and new programs"""

    params = {'function_set': [add2, sub2, mul2, div2],
              'arities': {2: [add2, sub2, mul2, div2]},
              'init_depth': (2, 6),
              'init_method': 'half and half',
              'n_features': 10,
              'const_range': (-1.0, 1.0),
              'metric': 'mean absolute error',
              'p_point_replace': 0.05,
              'parsimony_coefficient': 0.1}
    random_state = check_random_state(415)

    # Test for a small program
    test_gp = [mul2, div2, 8, 1, sub2, 9, .5]
    gp = _Program(random_state=random_state, program=test_gp, **params)

    self_test = gp.get_subtree(check_random_state(0))
    external_test = gp.get_subtree(check_random_state(0), test_gp)

    assert_equal(self_test, external_test) 
开发者ID:trevorstephens,项目名称:gplearn,代码行数:24,代码来源:test_genetic.py

示例10: test_yj_fit_transform

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def test_yj_fit_transform():
    yj = YeoJohnsonTransformer(cols=X.columns[:2])  # just first two cols
    trans = yj.fit_transform(X)

    assert isinstance(trans, pd.DataFrame)

    # Test it on a random...
    m, n = 1000, 5
    random_state = check_random_state(42)
    x = random_state.rand(m, n)

    # make some random
    mask = random_state.rand(m, n) % 2 < 0.5
    signs = np.ones((m, n))
    signs[~mask] = -1
    x *= signs

    YeoJohnsonTransformer().fit(x) 
开发者ID:tgsmith61591,项目名称:skoot,代码行数:20,代码来源:test_skewness.py

示例11: test_KNeighborsRegressor_multioutput_uniform_weight

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def test_KNeighborsRegressor_multioutput_uniform_weight(algorithm, weights):
    # Test k-neighbors in multi-output regression with uniform weight
    rng = check_random_state(0)
    n_features = 5
    n_samples = 40
    n_output = 4

    X = rng.rand(n_samples, n_features)
    y = rng.rand(n_samples, n_output)

    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

    knn = neighbors.KNeighborsRegressor(weights=weights,
                                        algorithm=algorithm)
    knn.fit(X_train, y_train)

    neigh_idx = knn.kneighbors(X_test, return_distance=False)
    y_pred_idx = np.array([np.mean(y_train[idx], axis=0)
                           for idx in neigh_idx])

    y_pred = knn.predict(X_test)

    assert_equal(y_pred.shape, y_test.shape)
    assert_equal(y_pred_idx.shape, y_test.shape)
    assert_array_almost_equal(y_pred, y_pred_idx) 
开发者ID:VarIr,项目名称:scikit-hubness,代码行数:27,代码来源:test_neighbors.py

示例12: _check_inputs

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def _check_inputs(
        self,
        X: Union[ArrayLike, DataFrameType],
        accept_sparse_negative: bool = False,
        copy: bool = False,
        in_fit: bool = True,
    ) -> Union[ArrayLike, DataFrameType]:
        if isinstance(X, (pd.DataFrame, dd.DataFrame)):
            X = X.values
        if isinstance(X, np.ndarray):
            C = len(X) // min(multiprocessing.cpu_count(), 2)
            X = da.from_array(X, chunks=C)

        rng = check_random_state(self.random_state)
        # TODO: non-float dtypes?
        # TODO: sparse arrays?
        # TODO: mix of sparse, dense?
        sample = rng.uniform(size=(5, X.shape[1])).astype(X.dtype)
        super(QuantileTransformer, self)._check_inputs(
            sample,
            accept_sparse_negative=accept_sparse_negative,
            copy=copy,
            in_fit=in_fit,
        )
        return X 
开发者ID:dask,项目名称:dask-ml,代码行数:27,代码来源:data.py

示例13: __init__

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def __init__(self, X, y, criterion, min_samples_split, max_depth,
                 n_val_sample, random_state):
        # make sure max_depth > 1
        if max_depth < 2:
            raise ValueError("max depth must be > 1")

        # check the input arrays, and if it's classification validate the
        # target values in y
        X, y = check_X_y(X, y, accept_sparse=False, dtype=None, copy=True)
        if is_classifier(self):
            check_classification_targets(y)

        # hyper parameters so we can later inspect attributes of the model
        self.min_samples_split = min_samples_split
        self.max_depth = max_depth
        self.n_val_sample = n_val_sample
        self.random_state = random_state

        # create the splitting class
        random_state = check_random_state(random_state)
        self.splitter = RandomSplitter(random_state, criterion, n_val_sample)

        # grow the tree depth first
        self.tree = self._find_next_split(X, y, 0) 
开发者ID:PacktPublishing,项目名称:Hands-on-Supervised-Machine-Learning-with-Python,代码行数:26,代码来源:cart.py

示例14: test_ch_base

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def test_ch_base():
    test = CHTest(m=2)
    assert test.estimate_seasonal_differencing_term(None) == 0

    # test really long m for random array
    random_state = check_random_state(42)
    CHTest(m=365).estimate_seasonal_differencing_term(random_state.rand(400)) 
开发者ID:alkaline-ml,项目名称:pmdarima,代码行数:9,代码来源:test_seasonality.py

示例15: check_importances

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_random_state [as 别名]
def check_importances(name, criterion, dtype, tolerance):
    # cast as dype
    X = X_large.astype(dtype, copy=False)
    y = y_large.astype(dtype, copy=False)

    ForestEstimator = FOREST_ESTIMATORS[name]

    est = ForestEstimator(n_estimators=10, criterion=criterion,
                          random_state=0)
    est.fit(X, y)
    importances = est.feature_importances_

    # The forest estimator can detect that only the first 3 features of the
    # dataset are informative:
    n_important = np.sum(importances > 0.1)
    assert_equal(importances.shape[0], 10)
    assert_equal(n_important, 3)
    assert np.all(importances[:3] > 0.1)

    # Check with parallel
    importances = est.feature_importances_
    est.set_params(n_jobs=2)
    importances_parallel = est.feature_importances_
    assert_array_almost_equal(importances, importances_parallel)

    # Check with sample weights
    sample_weight = check_random_state(0).randint(1, 10, len(X))
    est = ForestEstimator(n_estimators=10, random_state=0, criterion=criterion)
    est.fit(X, y, sample_weight=sample_weight)
    importances = est.feature_importances_
    assert np.all(importances >= 0.0)

    for scale in [0.5, 100]:
        est = ForestEstimator(n_estimators=10, random_state=0,
                              criterion=criterion)
        est.fit(X, y, sample_weight=scale * sample_weight)
        importances_bis = est.feature_importances_
        assert_less(np.abs(importances - importances_bis).mean(), tolerance) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:40,代码来源:test_forest.py


注:本文中的sklearn.utils.validation.check_random_state方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。