本文整理汇总了Python中sklearn.utils.validation.check_array方法的典型用法代码示例。如果您正苦于以下问题:Python validation.check_array方法的具体用法?Python validation.check_array怎么用?Python validation.check_array使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.utils.validation
的用法示例。
在下文中一共展示了validation.check_array方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _joint_log_likelihood
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def _joint_log_likelihood(self, X):
"""Calculate the posterior log probability of the samples X"""
check_is_fitted(self, "classes_")
X = check_array(X, accept_sparse='csr')
X_bin = self._transform_data(X)
n_classes, n_features = self.feature_log_prob_.shape
n_samples, n_features_X = X_bin.shape
if n_features_X != n_features:
raise ValueError(
"Expected input with %d features, got %d instead" %
(n_features, n_features_X))
# see chapter 4.1 of http://www.cs.columbia.edu/~mcollins/em.pdf
# implementation as in Formula 4.
jll = safe_sparse_dot(X_bin, self.feature_log_prob_.T)
jll += self.class_log_prior_
return jll
示例2: from_array
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def from_array(X, column_names=None):
"""A simple wrapper for H2OFrame.from_python. This takes a
numpy array (or 2d array) and returns an H2OFrame with all
the default args.
Parameters
----------
X : ndarray
The array to convert.
column_names : list, tuple (default=None)
the names to use for your columns
Returns
-------
H2OFrame
"""
X = check_array(X, force_all_finite=False)
return from_pandas(pd.DataFrame.from_records(data=X, columns=column_names))
示例3: _diff_inv_matrix
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def _diff_inv_matrix(x, lag, differences, xi):
n, m = x.shape
y = np.zeros((n + lag * differences, m), dtype=DTYPE)
if m >= 1: # todo: R checks this. do we need to?
# R: if(missing(xi)) xi <- matrix(0.0, lag*differences, m)
if xi is None:
xi = np.zeros((lag * differences, m), dtype=DTYPE)
else:
xi = check_array(
xi, dtype=DTYPE, copy=False, force_all_finite=False,
ensure_2d=True)
if xi.shape != (lag * differences, m):
raise IndexError('"xi" does not have the right shape')
# TODO: can we vectorize?
for i in range(m):
y[:, i] = _diff_inv_vector(x[:, i], lag, differences, xi[:, i])
return y
示例4: _seasonal_prediction_with_confidence
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def _seasonal_prediction_with_confidence(arima_res, start, end, exog, alpha,
**kwargs):
"""Compute the prediction for a SARIMAX and get a conf interval
Unfortunately, SARIMAX does not really provide a nice way to get the
confidence intervals out of the box, so we have to perform the
``get_prediction`` code here and unpack the confidence intervals manually.
Notes
-----
For internal use only.
"""
results = arima_res.get_prediction(
start=start,
end=end,
exog=exog,
**kwargs)
f = results.predicted_mean
conf_int = results.conf_int(alpha=alpha)
return check_endog(f, dtype=None, copy=False), \
check_array(conf_int, copy=False, dtype=None)
示例5: fit
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def fit(self, X, y_orig):
def as_factory(r):
return r if isinstance(r, AggregationRuleFactory) else DummyAggregationRuleFactory(r)
self.aggregation_rules__ = [ as_factory(r) for r in self.aggregation_rules ]
X = check_array(X)
self.classes_, _ = np.unique(y_orig, return_inverse=True)
self.m = X.shape[1]
if np.nan in self.classes_:
raise Exception("nan not supported for class values")
self.build_with_ga(X, y_orig)
return self
示例6: predict
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def predict(self, X):
"""
Predict outputs given examples.
Parameters:
-----------
X : the examples to predict (array or matrix)
Returns:
--------
y_pred : Predicted values for each row in matrix.
"""
if self.protos_ is None:
raise Exception("Prototypes not initialized. Perform a fit first.")
X = check_array(X)
# predict
return _predict(self.protos_, self.aggregation, self.classes_, X)
示例7: predict
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def predict(self, X):
"""
Predict outputs given examples.
Parameters:
-----------
X : the examples to predict (array or matrix)
Returns:
--------
y_pred : Predicted values for each row in matrix.
"""
if self.protos_ is None:
raise Exception("Prototypes not initialized. Perform a fit first.")
X = check_array(X)
# predict
return _predict_multi(self.protos_, self.aggregation, self.classes_, X, self.n_features)
示例8: fit
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def fit(self, X, y):
X = check_array(X)
self.classes_, _ = np.unique(y, return_inverse=True)
# construct distance measure
self.distance_ = self.df(X)
# build models
models = np.zeros((len(self.classes_), X.shape[1]))
for c_idx, c_value in enumerate(self.classes_):
models[c_idx, :] = self.build_for_class(X[y == c_value])
self.models_ = models
return self
示例9: fit
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def fit(self, X, y):
X = check_array(X)
self.classes_, y = np.unique(y, return_inverse=True)
if "?" in tuple(self.classes_):
raise ValueError("nan not supported for class values")
# build membership functions for each feature for each class
self.protos_ = [
build_memberships(X, y == idx, self.membership_factory)
for idx, class_value in enumerate(self.classes_)
]
# build aggregation
self.aggregation_ = self.aggregation_factory(self.protos_, X, y, self.classes_)
return self
示例10: fit
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def fit(self, X, y):
X = check_array(X)
self.classes_, y = np.unique(y, return_inverse=True)
if np.nan in self.classes_:
raise Exception("nan not supported for class values")
self.trees_ = {}
# build membership functions
P = []
for feature_idx, feature in enumerate(X.T):
P.extend(self.fuzzifier(feature_idx, feature))
# build the pattern tree for each class
for class_idx, class_value in enumerate(self.classes_):
class_vector = np.zeros(len(y))
class_vector[y == class_idx] = 1.0
root = self.build_for_class(X, y, class_vector, list(P))
self.trees_[class_idx] = root
return self
示例11: predict
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def predict(self, X):
"""Predict class for X.
Parameters
----------
X : Array-like of shape [n_samples, n_features]
The input to classify.
Returns
-------
y : array of shape = [n_samples]
The predicted classes.
"""
X = check_array(X)
if self.trees_ is None:
raise Exception("Pattern trees not initialized. Perform a fit first.")
y_classes = np.zeros((X.shape[0], len(self.classes_)))
for i, c in enumerate(self.classes_):
y_classes[:, i] = self.trees_[i](X)
# predict the maximum value
return self.classes_.take(np.argmax(y_classes, -1))
示例12: decision_function
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def decision_function(self, X):
"""Predict raw anomaly score of X using the fitted detector.
The anomaly score of an input sample is computed based on different
detector algorithms. For consistency, outliers are assigned with
larger anomaly scores.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The training input samples. Sparse matrices are accepted only
if they are supported by the base estimator.
Returns
-------
anomaly_scores : numpy array of shape (n_samples,)
The anomaly score of the input samples.
"""
check_is_fitted(self, ['decision_scores_', 'threshold_', 'labels_'])
X = check_array(X)
# Computer mahalanobis distance of the samples
return self.detector_.mahalanobis(X)
示例13: transform
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def transform(self, X):
check_is_fitted(self, ['statistics_', 'estimators_', 'gamma_'])
X = check_array(X, copy=True, dtype=np.float64, force_all_finite=False)
if X.shape[1] != self.statistics_.shape[1]:
raise ValueError("X has %d features per sample, expected %d"
% (X.shape[1], self.statistics_.shape[1]))
X_nan = np.isnan(X)
imputed = self.initial_imputer.transform(X)
if len(self.estimators_) > 1:
for i, estimator_ in enumerate(self.estimators_):
X_s = np.delete(imputed, i, 1)
y_nan = X_nan[:, i]
X_unk = X_s[y_nan]
if len(X_unk) > 0:
X[y_nan, i] = estimator_.predict(X_unk)
else:
estimator_ = self.estimators_[0]
X[X_nan] = estimator_.inverse_transform(estimator_.transform(imputed))[X_nan]
return X
示例14: predict
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def predict(self, X):
"""Applies learned event segmentation to new testing dataset
Alternative function for segmenting a new dataset after using
fit() to learn a sequence of events, to comply with the sklearn
Classifier interface
Parameters
----------
X: timepoint by voxel ndarray
fMRI data to segment based on previously-learned event patterns
Returns
-------
Event label for each timepoint
"""
check_is_fitted(self, ["event_pat_", "event_var_"])
X = check_array(X)
segments, test_ll = self.find_events(X)
return np.argmax(segments, axis=1)
示例15: fit
# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import check_array [as 别名]
def fit(self, X, y=None):
"""Compute the lower and upper quantile cutoffs, columns to transform, and nonnegative columns.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data array to transform. Must be numeric, non-sparse, and two-dimensional.
Returns
-------
self : LogExtremeValueTransformer
"""
super().fit(X)
X = check_array(X)
self.nonnegative_cols_ = [j for j in range(self.n_input_features_) if np.all(X[:, j] >= 0)]
return self