当前位置: 首页>>代码示例>>Python>>正文


Python validation._num_samples方法代码示例

本文整理汇总了Python中sklearn.utils.validation._num_samples方法的典型用法代码示例。如果您正苦于以下问题:Python validation._num_samples方法的具体用法?Python validation._num_samples怎么用?Python validation._num_samples使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.utils.validation的用法示例。


在下文中一共展示了validation._num_samples方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: check_cv_coverage

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def check_cv_coverage(cv, X, y, groups, expected_n_splits=None):
    n_samples = _num_samples(X)
    # Check that a all the samples appear at least once in a test fold
    if expected_n_splits is not None:
        assert_equal(cv.get_n_splits(X, y, groups), expected_n_splits)
    else:
        expected_n_splits = cv.get_n_splits(X, y, groups)

    collected_test_samples = set()
    iterations = 0
    for train, test in cv.split(X, y, groups):
        check_valid_split(train, test, n_samples=n_samples)
        iterations += 1
        collected_test_samples.update(test)

    # Check that the accumulated test samples cover the whole dataset
    assert_equal(iterations, expected_n_splits)
    if n_samples is not None:
        assert_equal(collected_test_samples, set(range(n_samples))) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:21,代码来源:test_split.py

示例2: transform

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def transform(self, y):
        """Transform labels to normalized encoding.

        Parameters
        ----------
        y : array-like of shape [n_samples]
            Target values.

        Returns
        -------
        y : array-like of shape [n_samples]
        """
        check_is_fitted(self, 'classes_')
        y = column_or_1d(y, warn=True)
        # transform of empty array is empty array
        if _num_samples(y) == 0:
            return np.array([])

        _, y = _encode(y, uniques=self.classes_, encode=True)
        return y 
开发者ID:bmcfee,项目名称:pumpp,代码行数:22,代码来源:labels.py

示例3: inverse_transform

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def inverse_transform(self, y):
        """Transform labels back to original encoding.

        Parameters
        ----------
        y : numpy array of shape [n_samples]
            Target values.

        Returns
        -------
        y : numpy array of shape [n_samples]
        """
        check_is_fitted(self, 'classes_')
        y = column_or_1d(y, warn=True)
        # inverse transform of empty array is empty array
        if _num_samples(y) == 0:
            return np.array([])

        diff = np.setdiff1d(y, np.arange(len(self.classes_)))
        if len(diff):
            raise ValueError(
                    "y contains previously unseen labels: %s" % str(diff))
        y = np.asarray(y)
        return self.classes_[y] 
开发者ID:bmcfee,项目名称:pumpp,代码行数:26,代码来源:labels.py

示例4: fit

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def fit(self, y):
        """Fit label binarizer

        Parameters
        ----------
        y : array of shape [n_samples,] or [n_samples, n_classes]
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification.

        Returns
        -------
        self : returns an instance of self.
        """
        self.y_type_ = type_of_target(y)
        if 'multioutput' in self.y_type_:
            raise ValueError("Multioutput target data is not supported with "
                             "label binarization")
        if _num_samples(y) == 0:
            raise ValueError('y has 0 samples: %r' % y)

        self.sparse_input_ = sp.issparse(y)
        self.classes_ = unique_labels(y)
        return self 
开发者ID:bmcfee,项目名称:pumpp,代码行数:25,代码来源:labels.py

示例5: predict

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def predict(self, x):
        """
        Applying multiple estimators for prediction.

        Args:
            x (numpy.ndarray): NxD array
        Returns:
            numpy.ndarray: predicted labels, Nx1 array
        """
        n_samples = _num_samples(x)
        maxima = np.empty(n_samples, dtype=float)
        maxima.fill(-np.inf)
        argmaxima = np.zeros(n_samples, dtype=int)
        for i, e in enumerate(self.estimators):
            pred = np.ravel(e.decision_function(x))
            np.maximum(maxima, pred, out=maxima)
            argmaxima[maxima == pred] = i
        return self.classes[np.array(argmaxima.T)] 
开发者ID:Qiskit,项目名称:qiskit-aqua,代码行数:20,代码来源:one_against_rest.py

示例6: get_n_splits

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def get_n_splits(self, X, y=None, groups=None):
        """Returns the number of splitting iterations in the cross-validator

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y : object
            Always ignored, exists for compatibility.

        groups : object
            Always ignored, exists for compatibility.
        """
        self.__check_validity(X, y, groups)
        n_samples = _num_samples(X)
        gap_before, gap_after = self.gap_before, self.gap_after
        if n_samples - gap_after - self.p >= gap_before + 1:
            n_splits = n_samples - self.p + 1
        else:
            n_splits = max(n_samples - gap_after - self.p, 0)
            n_splits += max(n_samples - self.p - gap_before, 0)
        return n_splits 
开发者ID:WenjieZ,项目名称:TSCV,代码行数:26,代码来源:split.py

示例7: _do_n_samples

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def _do_n_samples(dsk, token, Xs, n_splits):
    name = "n_samples-" + token
    n_samples = []
    n_samples_append = n_samples.append
    seen = {}
    m = 0
    for x in Xs:
        if x in seen:
            n_samples_append(seen[x])
        else:
            for n in range(n_splits):
                dsk[name, m, n] = (_num_samples, x + (n,))
            n_samples_append((name, m))
            seen[x] = (name, m)
            m += 1
    return n_samples 
开发者ID:dask,项目名称:dask-ml,代码行数:18,代码来源:_search.py

示例8: test_check_sample_weight

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def test_check_sample_weight():
    from sklearn.cluster.k_means_ import _check_sample_weight
    sample_weight = None
    checked_sample_weight = _check_sample_weight(X, sample_weight)
    assert_equal(_num_samples(X), _num_samples(checked_sample_weight))
    assert_almost_equal(checked_sample_weight.sum(), _num_samples(X))
    assert_equal(X.dtype, checked_sample_weight.dtype) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:9,代码来源:test_k_means.py

示例9: transform

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def transform(self, y):
        """Transform labels to normalized encoding.

        If ``self.fill_unseen_labels`` is ``True``, use ``self.fill_encoded_label_value`` for unseen values.
        Seen labels are encoded with value between 0 and n_classes-1.  Unseen labels are encoded with
        ``self.fill_encoded_label_value`` with a default value of n_classes.

        Parameters
        ----------
        y : array-like of shape [n_samples]
            Label values.

        Returns
        -------
        y_encoded : array-like of shape [n_samples]
                    Encoded label values.
        """
        check_is_fitted(self, "classes_")
        y = column_or_1d(y, warn=True)

        # transform of empty array is empty array
        if _num_samples(y) == 0:
            return np.array([])

        if self.fill_unseen_labels:
            _, mask = _encode_check_unknown(y, self.classes_, return_mask=True)
            y_encoded = np.searchsorted(self.classes_, y)
            fill_encoded_label_value = self.fill_encoded_label_value or len(self.classes_)
            y_encoded[~mask] = fill_encoded_label_value
        else:
            _, y_encoded = _encode(y, uniques=self.classes_, encode=True)

        return y_encoded 
开发者ID:aws,项目名称:sagemaker-scikit-learn-extension,代码行数:35,代码来源:encoders.py

示例10: inverse_transform

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def inverse_transform(self, y):
        """Transform labels back to original encoding.

        If ``self.fill_unseen_labels`` is ``True``, use ``self.fill_label_value`` for unseen values.

        Parameters
        ----------
        y : numpy array of shape [n_samples]
            Encoded label values.

        Returns
        -------
        y_decoded : numpy array of shape [n_samples]
                    Label values.
        """
        check_is_fitted(self, "classes_")
        y = column_or_1d(y, warn=True)

        if y.dtype.kind not in ("i", "u"):
            try:
                y = y.astype(np.float).astype(np.int)
            except ValueError:
                raise ValueError("`y` contains values not convertible to integer.")

        # inverse transform of empty array is empty array
        if _num_samples(y) == 0:
            return np.array([])

        labels = np.arange(len(self.classes_))
        diff = np.setdiff1d(y, labels)

        if diff and not self.fill_unseen_labels:
            raise ValueError("y contains previously unseen labels: %s" % str(diff))

        y_decoded = [self.classes_[idx] if idx in labels else self.fill_label_value for idx in y]
        return y_decoded 
开发者ID:aws,项目名称:sagemaker-scikit-learn-extension,代码行数:38,代码来源:encoders.py

示例11: _iter_train_indices

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def _iter_train_indices(self, X=None, y=None, groups=None):
        """Generates integer indices corresponding to training sets.

        By default, delegates to _iter_test_indices(X, y, groups)
        """
        return self.__complement_indices(
                self._iter_test_indices(X, y, groups), _num_samples(X)) 
开发者ID:WenjieZ,项目名称:TSCV,代码行数:9,代码来源:split.py

示例12: _iter_train_masks

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def _iter_train_masks(self, X=None, y=None, groups=None):
        """Generates boolean masks corresponding to training sets.

        By default, delegates to _iter_train_indices(X, y, groups)
        """
        return GapCrossValidator.__indices_to_masks(
                self._iter_train_indices(X, y, groups), _num_samples(X)) 
开发者ID:WenjieZ,项目名称:TSCV,代码行数:9,代码来源:split.py

示例13: _iter_test_indices

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def _iter_test_indices(self, X, y=None, groups=None):
        self.__check_validity(X, y, groups)
        n_samples = _num_samples(X)
        gap_before, gap_after = self.gap_before, self.gap_after
        if n_samples - gap_after - self.p >= gap_before + 1:
            for i in range(n_samples - self.p + 1):
                yield np.arange(i, i + self.p)
        else:
            for i in range(n_samples - gap_after - self.p):
                yield np.arange(i, i + self.p)
            for i in range(gap_before + 1, n_samples - self.p + 1):
                yield np.arange(i, i + self.p) 
开发者ID:WenjieZ,项目名称:TSCV,代码行数:14,代码来源:split.py

示例14: __check_validity

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def __check_validity(self, X, y=None, groups=None):
        if X is None:
            raise ValueError("The 'X' parameter should not be None.")
        n_samples = _num_samples(X)
        gap_before, gap_after = self.gap_before, self.gap_after
        if (0 >= n_samples - gap_after - self.p and
                gap_before >= n_samples - self.p):
            raise ValueError("Not enough training samples available.")
        if n_samples - gap_after - self.p <= gap_before + 1:
            warnings.warn(SINGLETON_WARNING, Warning) 
开发者ID:WenjieZ,项目名称:TSCV,代码行数:12,代码来源:split.py

示例15: _iter_indices

# 需要导入模块: from sklearn.utils import validation [as 别名]
# 或者: from sklearn.utils.validation import _num_samples [as 别名]
def _iter_indices(self, X, y, groups=None):
        n_samples = _num_samples(X)
        y = check_array(y, ensure_2d=False, dtype=None)
        y = np.asarray(y, dtype=bool)
        type_of_target_y = type_of_target(y)

        if type_of_target_y != 'multilabel-indicator':
            raise ValueError(
                'Supported target type is: multilabel-indicator. Got {!r} instead.'.format(
                    type_of_target_y))

        n_train, n_test = _validate_shuffle_split(n_samples, self.test_size,
                                                  self.train_size)

        n_samples = y.shape[0]
        rng = check_random_state(self.random_state)
        y_orig = y.copy()

        r = np.array([n_train, n_test]) / (n_train + n_test)

        for _ in range(self.n_splits):
            indices = np.arange(n_samples)
            rng.shuffle(indices)
            y = y_orig[indices]

            test_folds = IterativeStratification(labels=y, r=r, random_state=rng)

            test_idx = test_folds[np.argsort(indices)] == 1
            test = np.where(test_idx)[0]
            train = np.where(~test_idx)[0]

            yield train, test 
开发者ID:trent-b,项目名称:iterative-stratification,代码行数:34,代码来源:ml_stratifiers.py


注:本文中的sklearn.utils.validation._num_samples方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。