本文整理汇总了Python中sklearn.preprocessing.MinMaxScaler方法的典型用法代码示例。如果您正苦于以下问题:Python preprocessing.MinMaxScaler方法的具体用法?Python preprocessing.MinMaxScaler怎么用?Python preprocessing.MinMaxScaler使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.preprocessing
的用法示例。
在下文中一共展示了preprocessing.MinMaxScaler方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: make_mnist_data
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def make_mnist_data(path, isconv=False):
X, Y = load_mnist(path, True)
X = X.astype(np.float64)
X2, Y2 = load_mnist(path, False)
X2 = X2.astype(np.float64)
X3 = np.concatenate((X, X2), axis=0)
minmaxscale = MinMaxScaler().fit(X3)
X = minmaxscale.transform(X)
if isconv:
X = X.reshape((-1, 1, 28, 28))
sio.savemat(osp.join(path, 'traindata.mat'), {'X': X, 'Y': Y})
X2 = minmaxscale.transform(X2)
if isconv:
X2 = X2.reshape((-1, 1, 28, 28))
sio.savemat(osp.join(path, 'testdata.mat'), {'X': X2, 'Y': Y2})
示例2: main
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def main():
data_dir_path = './data'
model_dir_path = './models'
ecg_data = pd.read_csv(data_dir_path + '/ecg_discord_test.csv', header=None)
print(ecg_data.head())
ecg_np_data = ecg_data.as_matrix()
scaler = MinMaxScaler()
ecg_np_data = scaler.fit_transform(ecg_np_data)
print(ecg_np_data.shape)
ae = BidirectionalLstmAutoEncoder()
# fit the data and save model into model_dir_path
if DO_TRAINING:
ae.fit(ecg_np_data[:23, :], model_dir_path=model_dir_path, estimated_negative_sample_ratio=0.9)
# load back the model saved in model_dir_path detect anomaly
ae.load_model(model_dir_path)
anomaly_information = ae.anomaly(ecg_np_data[:23, :])
reconstruction_error = []
for idx, (is_anomaly, dist) in enumerate(anomaly_information):
print('# ' + str(idx) + ' is ' + ('abnormal' if is_anomaly else 'normal') + ' (dist: ' + str(dist) + ')')
reconstruction_error.append(dist)
visualize_reconstruction_error(reconstruction_error, ae.threshold)
示例3: main
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def main():
data_dir_path = './data'
model_dir_path = './models'
ecg_data = pd.read_csv(data_dir_path + '/ecg_discord_test.csv', header=None)
print(ecg_data.head())
ecg_np_data = ecg_data.as_matrix()
scaler = MinMaxScaler()
ecg_np_data = scaler.fit_transform(ecg_np_data)
print(ecg_np_data.shape)
ae = CnnLstmAutoEncoder()
# fit the data and save model into model_dir_path
if DO_TRAINING:
ae.fit(ecg_np_data[:23, :], model_dir_path=model_dir_path, estimated_negative_sample_ratio=0.9)
# load back the model saved in model_dir_path detect anomaly
ae.load_model(model_dir_path)
anomaly_information = ae.anomaly(ecg_np_data[:23, :])
reconstruction_error = []
for idx, (is_anomaly, dist) in enumerate(anomaly_information):
print('# ' + str(idx) + ' is ' + ('abnormal' if is_anomaly else 'normal') + ' (dist: ' + str(dist) + ')')
reconstruction_error.append(dist)
visualize_reconstruction_error(reconstruction_error, ae.threshold)
示例4: main
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def main():
data_dir_path = './data'
model_dir_path = './models'
ecg_data = pd.read_csv(data_dir_path + '/ecg_discord_test.csv', header=None)
print(ecg_data.head())
ecg_np_data = ecg_data.as_matrix()
scaler = MinMaxScaler()
ecg_np_data = scaler.fit_transform(ecg_np_data)
print(ecg_np_data.shape)
ae = LstmAutoEncoder()
# fit the data and save model into model_dir_path
if DO_TRAINING:
ae.fit(ecg_np_data[:23, :], model_dir_path=model_dir_path, estimated_negative_sample_ratio=0.9)
# load back the model saved in model_dir_path detect anomaly
ae.load_model(model_dir_path)
anomaly_information = ae.anomaly(ecg_np_data[:23, :])
reconstruction_error = []
for idx, (is_anomaly, dist) in enumerate(anomaly_information):
print('# ' + str(idx) + ' is ' + ('abnormal' if is_anomaly else 'normal') + ' (dist: ' + str(dist) + ')')
reconstruction_error.append(dist)
visualize_reconstruction_error(reconstruction_error, ae.threshold)
示例5: make_misc_data
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def make_misc_data(path, filename, dim, isconv=False):
import cPickle
fo = open(osp.join(path, filename), 'r')
data = cPickle.load(fo)
fo.close()
X = data['data'].astype(np.float64)
Y = data['labels']
minmaxscale = MinMaxScaler().fit(X)
X = minmaxscale.transform(X)
p = np.random.permutation(X.shape[0])
X = X[p]
Y = Y[p]
N = X.shape[0]
if isconv:
X = X.reshape((-1, dim[2], dim[0], dim[1]))
save_misc_data(path, X, Y, N)
示例6: make_easy_visual_data
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def make_easy_visual_data(path, N=600):
"""Make 3 clusters of 2D data where the cluster centers lie along a line.
The latent variable would be just their x or y value since that uniquely defines their projection onto the line.
"""
line = (1.5, 1)
centers = [(m, m * line[0] + line[1]) for m in (-4, 0, 6)]
cluster_std = [1, 1, 1.5]
X, labels = make_blobs(n_samples=N, cluster_std=cluster_std, centers=centers, n_features=len(centers[0]))
# scale data
minmaxscale = MinMaxScaler().fit(X)
X = minmaxscale.transform(X)
save_misc_data(path, X, labels, N)
return X, labels
示例7: applyFeatures
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def applyFeatures(dataset, delta):
"""
applies rolling mean and delayed returns to each dataframe in the list
"""
columns = dataset.columns
close = columns[-3]
returns = columns[-1]
for n in delta:
addFeatures(dataset, close, returns, n)
dataset = dataset.drop(dataset.index[0:max(delta)]) #drop NaN due to delta spanning
# normalize columns
scaler = preprocessing.MinMaxScaler()
return pd.DataFrame(scaler.fit_transform(dataset),\
columns=dataset.columns, index=dataset.index)
示例8: get_term_topic
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def get_term_topic(self, X):
n_features = X.shape[1]
id2word = self.vocabulary_
word2topic = {}
with open('word_topic.txt', 'r') as f:
for line in f:
strs = line.decode('utf-8').strip('\n').split('\t')
word2topic[strs[0]] = strs[2]
topic = np.zeros((len(id2word),))
for i, key in enumerate(id2word):
if key in word2topic:
topic[id2word[key]] = word2topic[key]
else:
print key
topic = preprocessing.MinMaxScaler().fit_transform(topic)
# topic = sp.spdiags(topic, diags=0, m=n_features,
# n=n_features, format='csr')
return topic
示例9: test_metrics_wrapper
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def test_metrics_wrapper():
# make the features in y be in different scales
y = np.array([[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]) * [1, 100]
# With no scaler provided it is relevant which of the two series gets an 80% error
metric_func_noscaler = model_utils.metric_wrapper(mean_squared_error)
mse_feature_one_wrong = metric_func_noscaler(y, y * [0.8, 1])
mse_feature_two_wrong = metric_func_noscaler(y, y * [1, 0.8])
assert not np.isclose(mse_feature_one_wrong, mse_feature_two_wrong)
# With a scaler provided it is not relevant which of the two series gets an 80%
# error
scaler = MinMaxScaler().fit(y)
metric_func_scaler = model_utils.metric_wrapper(mean_squared_error, scaler=scaler)
mse_feature_one_wrong = metric_func_scaler(y, y * [0.8, 1])
mse_feature_two_wrong = metric_func_scaler(y, y * [1, 0.8])
assert np.isclose(mse_feature_one_wrong, mse_feature_two_wrong)
示例10: build_ensemble
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def build_ensemble(**kwargs):
"""Generate ensemble."""
ens = SuperLearner(**kwargs)
prep = {'Standard Scaling': [StandardScaler()],
'Min Max Scaling': [MinMaxScaler()],
'No Preprocessing': []}
est = {'Standard Scaling':
[ElasticNet(), Lasso(), KNeighborsRegressor()],
'Min Max Scaling':
[SVR()],
'No Preprocessing':
[RandomForestRegressor(random_state=SEED),
GradientBoostingRegressor()]}
ens.add(est, prep)
ens.add(GradientBoostingRegressor(), meta=True)
return ens
示例11: test_build_meowa_factory
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def test_build_meowa_factory():
iris = datasets.load_iris()
X = iris.data
y = iris.target
from sklearn.preprocessing import MinMaxScaler
X = MinMaxScaler().fit_transform(X)
l = nfpc.FuzzyPatternClassifier(membership_factory=t_factory,
aggregation_factory=nfpc.MEOWAFactory())
from sklearn.model_selection import cross_val_score
scores = cross_val_score(l, X, y, cv=10)
mean = np.mean(scores)
assert 0.80 < mean
示例12: test_build_ps_owa_factory
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def test_build_ps_owa_factory():
iris = datasets.load_iris()
X = iris.data
y = iris.target
from sklearn.preprocessing import MinMaxScaler
X = MinMaxScaler().fit_transform(X)
l = nfpc.FuzzyPatternClassifier(
membership_factory=t_factory,
aggregation_factory=nfpc.GAOWAFactory(optimizer=nfpc.ps_owa_optimizer())
)
from sklearn.model_selection import cross_val_score
scores = cross_val_score(l, X, y, cv=10)
mean = np.mean(scores)
print("mean", mean)
assert 0.92 < mean
示例13: test_classifier_iris
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def test_classifier_iris():
iris = load_iris()
X = iris.data
y = iris.target
from sklearn.preprocessing import MinMaxScaler
X = MinMaxScaler().fit_transform(X)
l = fpcga.FuzzyPatternClassifierGA(iterations=100, random_state=1)
from sklearn.model_selection import cross_val_score
scores = cross_val_score(l, X, y, cv=10)
assert len(scores) == 10
assert np.mean(scores) > 0.6
mean = np.mean(scores)
print("mean", mean)
assert 0.92 == pytest.approx(mean, 0.01)
示例14: scale_target_for_each_time_group
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def scale_target_for_each_time_group(self, X, tgc_wo_time):
# Go through groups and standard scale them
if len(tgc_wo_time) > 0:
X_groups = X.groupby(tgc_wo_time)
else:
X_groups = [([None], X)]
self.scalers = {}
scaled_ys = []
for key, X_grp in X_groups:
# Create dict key to store the min max scaler
grp_hash = self.get_hash(key)
# Scale target for current group
self.scalers[grp_hash] = MinMaxScaler()
y_skl = self.scalers[grp_hash].fit_transform(X_grp[['y']].values)
# Put back in a DataFrame to keep track of original index
y_skl_df = pd.DataFrame(y_skl, columns=['y'])
y_skl_df.index = X_grp.index
scaled_ys.append(y_skl_df)
# Set target back in original frame but keep original
X['y_orig'] = X['y']
X['y'] = pd.concat(tuple(scaled_ys), axis=0)
return X
开发者ID:h2oai,项目名称:driverlessai-recipes,代码行数:25,代码来源:parallel_prophet_forecast_using_individual_groups.py
示例15: _pp_min_max_scale
# 需要导入模块: from sklearn import preprocessing [as 别名]
# 或者: from sklearn.preprocessing import MinMaxScaler [as 别名]
def _pp_min_max_scale(df):
"""
特征值归一化处理
"""
print(" start minmax scaling...")
# drop掉id和price_date字段
# df = df.drop(['id', 'price_date'], axis=1)
# 保存index信息及column信息
index = df.index
columns = df.columns
# 对特征进行归一化
feature_scaled = preprocessing.MinMaxScaler().fit_transform(df.iloc[:, :-1])
target = np.array(df.iloc[:, -1])
target.shape = (len(target), 1)
# 合并归一化后的X和未做归一化的y(归一化后Pandas 的 DataFrame类型会转换成numpy的ndarray类型)
df_scaled = pd.DataFrame(np.hstack((feature_scaled, target)))
# 重新设置索引及column信息
df_scaled.index = index
df_scaled.columns = columns
print(" minmax scaling finished.")
return df_scaled