当前位置: 首页>>代码示例>>Python>>正文


Python pipeline.Pipeline方法代码示例

本文整理汇总了Python中sklearn.pipeline.Pipeline方法的典型用法代码示例。如果您正苦于以下问题:Python pipeline.Pipeline方法的具体用法?Python pipeline.Pipeline怎么用?Python pipeline.Pipeline使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.pipeline的用法示例。


在下文中一共展示了pipeline.Pipeline方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: pca

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def pca(self, **kwargs):
        if 'n_components' in kwargs:
            nComp = kwargs['n_components']
        else:
            nComp = 0.995

        if 'dates' in kwargs:
            mat = self.to_matrix(kwargs['dates'])
        else:
            mat = self.to_matrix()
        scaler = StandardScaler()
        pca = PCA(n_components=nComp)
        self._pipeline = Pipeline([('scaler', scaler), ('pca', pca)])
        self._pipeline.fit(mat)
        
        if 'file' in kwargs:
            tofile(kwargs['file'], self._pipeline)
        
        return self._pipeline 
开发者ID:Andres-Hernandez,项目名称:CalibrationNN,代码行数:21,代码来源:data_utils.py

示例2: run

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def run(self):
        '''
        Runs a model with params p.
        '''
        self.clf.set_params(**self.params)
        # f = get_feature_transformer(self.parser)
        # self.X_train_fts = f.fit_transform(self.X_train)
        # self.X_test_fts = f.transform(self.X_test)
        self.pipeline = Pipeline([
            # ('feature_gen', f),
            ('clf', self.clf),
        ])
        self.y_pred_probs = self.pipeline.fit(self.X_train,self.y_train).predict_proba(self.X_test)[:,1]
        if self.model_type in ['RF', 'ET', 'AB', 'GB', 'DT']:
            self.importances = self.clf.feature_importances_
        elif self.model_type in ['SVM', 'LR', 'SGD']:
            self.importances = self.clf.coef_[0] 
开发者ID:aldengolab,项目名称:fake-news-detection,代码行数:19,代码来源:model.py

示例3: full_pipeline

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def full_pipeline(model_type, predicted_column, grain_column, impute=True, verbose=True, imputeStrategy='MeanMode', tunedRandomForest=False, numeric_columns_as_categorical=None):
    """
    Builds the data preparation pipeline. Sequentially runs transformers and filters to clean and prepare the data.
    
    Note advanced users may wish to use their own custom pipeline.
    """

    # Note: this could be done more elegantly using FeatureUnions _if_ you are not using pandas dataframes for
    #   inputs of the later pipelines as FeatureUnion intrinsically converts outputs to numpy arrays.
    pipeline = Pipeline([
        ('remove_DTS_columns', hcai_filters.DataframeColumnSuffixFilter()),
        ('remove_grain_column', hcai_filters.DataframeColumnRemover(grain_column)),
        # Perform one of two basic imputation methods
        # TODO we need to think about making this optional to solve the problem of rare and very predictive values
        ('imputation', hcai_transformers.DataFrameImputer(impute=impute, verbose=verbose, imputeStrategy=imputeStrategy, tunedRandomForest=tunedRandomForest, numeric_columns_as_categorical=numeric_columns_as_categorical)),
        ('null_row_filter', hcai_filters.DataframeNullValueFilter(excluded_columns=None)),
        ('convert_target_to_binary', hcai_transformers.DataFrameConvertTargetToBinary(model_type, predicted_column)),
        ('prediction_to_numeric', hcai_transformers.DataFrameConvertColumnToNumeric(predicted_column)),
        ('create_dummy_variables', hcai_transformers.DataFrameCreateDummyVariables(excluded_columns=[predicted_column])),
    ])
    return pipeline 
开发者ID:HealthCatalyst,项目名称:healthcareai-py,代码行数:23,代码来源:data_preparation.py

示例4: test_stability_selection_regression

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def test_stability_selection_regression():
    n, p, k = 500, 1000, 5

    X, y, important_betas = _generate_dummy_regression_data(n=n, k=k)

    base_estimator = Pipeline([
        ('scaler', StandardScaler()),
        ('model', Lasso())
    ])

    lambdas_grid = np.logspace(-1, 1, num=10)

    selector = StabilitySelection(base_estimator=base_estimator,
                                  lambda_name='model__alpha',
                                  lambda_grid=lambdas_grid)
    selector.fit(X, y)

    chosen_betas = selector.get_support(indices=True)

    assert_almost_equal(important_betas, chosen_betas) 
开发者ID:scikit-learn-contrib,项目名称:stability-selection,代码行数:22,代码来源:test_stability_selection.py

示例5: test_with_complementary_pairs_bootstrap

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def test_with_complementary_pairs_bootstrap():
    n, p, k = 500, 1000, 5

    X, y, important_betas = _generate_dummy_regression_data(n=n, k=k)

    base_estimator = Pipeline([
        ('scaler', StandardScaler()),
        ('model', Lasso())
    ])

    lambdas_grid = np.logspace(-1, 1, num=10)

    selector = StabilitySelection(base_estimator=base_estimator,
                                  lambda_name='model__alpha',
                                  lambda_grid=lambdas_grid,
                                  bootstrap_func='complementary_pairs')
    selector.fit(X, y)

    chosen_betas = selector.get_support(indices=True)

    assert_almost_equal(important_betas, chosen_betas) 
开发者ID:scikit-learn-contrib,项目名称:stability-selection,代码行数:23,代码来源:test_stability_selection.py

示例6: test_different_shape

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def test_different_shape():
    n, p, k = 100, 200, 5

    X, y, important_betas = _generate_dummy_regression_data(n=n, k=k)

    base_estimator = Pipeline([
        ('scaler', StandardScaler()),
        ('model', Lasso())
    ])

    lambdas_grid = np.logspace(-1, 1, num=10)

    selector = StabilitySelection(base_estimator=base_estimator,
                                  lambda_name='model__alpha',
                                  lambda_grid=lambdas_grid)
    selector.fit(X, y)
    selector.transform(X[:, :-2]) 
开发者ID:scikit-learn-contrib,项目名称:stability-selection,代码行数:19,代码来源:test_stability_selection.py

示例7: test_no_features

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def test_no_features():
    n, p, k = 100, 200, 0

    X, y, important_betas = _generate_dummy_regression_data(n=n, k=k)

    base_estimator = Pipeline([
        ('scaler', StandardScaler()),
        ('model', Lasso())
    ])

    lambdas_grid = np.logspace(-1, 1, num=10)

    selector = StabilitySelection(base_estimator=base_estimator,
                                  lambda_name='model__alpha',
                                  lambda_grid=lambdas_grid)
    selector.fit(X, y)

    assert_almost_equal(selector.transform(X),
                        np.empty(0).reshape((X.shape[0], 0))) 
开发者ID:scikit-learn-contrib,项目名称:stability-selection,代码行数:21,代码来源:test_stability_selection.py

示例8: run_logreg

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def run_logreg(X_train, y_train, selection_threshold=0.2):
    print("\nrunning logistic regression...")
    print("using a selection threshold of {}".format(selection_threshold))
    pipe = Pipeline(
        [
            (
                "feature_selection",
                RandomizedLogisticRegression(selection_threshold=selection_threshold),
            ),
            ("classification", LogisticRegression()),
        ]
    )
    pipe.fit(X_train, y_train)
    print("training accuracy : {}".format(pipe.score(X_train, y_train)))
    print("testing accuracy : {}".format(pipe.score(X_test, y_test)))
    return pipe 
开发者ID:RasaHQ,项目名称:rasa_lookup_demo,代码行数:18,代码来源:create_ngrams.py

示例9: make_pipeline

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def make_pipeline(encoding_method):
    # static transformers from the other columns
    transformers = [(enc + '_' + col, encoders_dict[enc], [col])
                    for col, enc in clean_columns.items()]
    # adding the encoded column
    transformers += [(encoding_method, encoders_dict[encoding_method],
                      [dirty_column])]
    pipeline = Pipeline([
        # Use ColumnTransformer to combine the features
        ('union', ColumnTransformer(
            transformers=transformers,
            remainder='drop')),
        ('scaler', StandardScaler(with_mean=False)),
        ('clf', RidgeCV())
    ])
    return pipeline


#########################################################################
# Fitting each encoding methods with a RidgeCV
# --------------------------------------------
# Eventually, we loop over the different encoding methods,
# instantiate each time a new pipeline, fit it
# and store the returned cross-validation score: 
开发者ID:dirty-cat,项目名称:dirty_cat,代码行数:26,代码来源:02_fit_predict_plot_employee_salaries.py

示例10: make_pipeline

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def make_pipeline(encoding_method):
    # static transformers from the other columns
    transformers = [('one-hot-clean', encoder_dict['one-hot'], clean_columns)]
    # adding the encoded column
    transformers += [(encoding_method + '-dirty', encoder_dict[encoding_method],
                      [dirty_column])]
    pipeline = Pipeline([
        # Use ColumnTransformer to combine the features
        ('union', ColumnTransformer(
            transformers=transformers,
            remainder='drop')),
        ('scaler', StandardScaler(with_mean=False)),
        ('classifier', RandomForestClassifier(random_state=5))
    ])

    return pipeline


###############################################################################
# Evaluation of different encoding methods
# -----------------------------------------
# We then loop over encoding methods, scoring the different pipeline predictions
# using a cross validation score: 
开发者ID:dirty-cat,项目名称:dirty_cat,代码行数:25,代码来源:03_fit_predict_plot_midwest_survey.py

示例11: test_keras_autoencoder_scoring

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def test_keras_autoencoder_scoring(model, kind, n_features_out):
    """
    Test the KerasAutoEncoder and KerasLSTMAutoEncoder have a working scoring function
    """
    Model = pydoc.locate(f"gordo.machine.model.models.{model}")
    model = Pipeline([("model", Model(kind=kind))])
    X = np.random.random((8, 2))

    # Should be able to deal with y output different than X input features
    y = np.random.random((8, n_features_out))

    with pytest.raises(NotFittedError):
        model.score(X, y)

    model.fit(X, y)
    score = model.score(X, y)
    logger.info(f"Score: {score:.4f}") 
开发者ID:equinor,项目名称:gordo,代码行数:19,代码来源:test_model.py

示例12: load

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def load(source_dir: Union[os.PathLike, str]) -> Any:
    """
    Load an object from a directory, saved by
    ``gordo.serializer.pipeline_serializer.dump``

    This take a directory, which is either top-level, meaning it contains
    a sub directory in the naming scheme: "n_step=<int>-class=<path.to.Class>"
    or the aforementioned naming scheme directory directly. Will return that
    unsterilized object.


    Parameters
    ----------
    source_dir: Union[os.PathLike, str]
        Location of the top level dir the pipeline was saved

    Returns
    -------
    Union[GordoBase, Pipeline, BaseEstimator]
    """
    # This source dir should have a single pipeline entry directory.
    # may have been passed a top level dir, containing such an entry:
    with open(os.path.join(source_dir, "model.pkl"), "rb") as f:
        return pickle.load(f) 
开发者ID:equinor,项目名称:gordo,代码行数:26,代码来源:serializer.py

示例13: create_ngram_model

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def create_ngram_model(params=None):
    def preprocessor(tweet):
        global emoticons_replaced
        tweet = tweet.lower()

        for k in emo_repl_order:
            tweet = tweet.replace(k, emo_repl[k])
        for r, repl in re_repl.iteritems():
            tweet = re.sub(r, repl, tweet)

        return tweet

    tfidf_ngrams = TfidfVectorizer(preprocessor=preprocessor,
                                   analyzer="word")
    clf = MultinomialNB()
    pipeline = Pipeline([('tfidf', tfidf_ngrams), ('clf', clf)])

    if params:
        pipeline.set_params(**params)

    return pipeline 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:23,代码来源:03_clean.py

示例14: create_union_model

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def create_union_model(params=None):
    def preprocessor(tweet):
        tweet = tweet.lower()

        for k in emo_repl_order:
            tweet = tweet.replace(k, emo_repl[k])
        for r, repl in re_repl.iteritems():
            tweet = re.sub(r, repl, tweet)

        return tweet.replace("-", " ").replace("_", " ")

    tfidf_ngrams = TfidfVectorizer(preprocessor=preprocessor,
                                   analyzer="word")
    ling_stats = LinguisticVectorizer()
    all_features = FeatureUnion(
        [('ling', ling_stats), ('tfidf', tfidf_ngrams)])
    #all_features = FeatureUnion([('tfidf', tfidf_ngrams)])
    #all_features = FeatureUnion([('ling', ling_stats)])
    clf = MultinomialNB()
    pipeline = Pipeline([('all', all_features), ('clf', clf)])

    if params:
        pipeline.set_params(**params)

    return pipeline 
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:27,代码来源:04_sent.py

示例15: test_imputation_pipeline_grid_search

# 需要导入模块: from sklearn import pipeline [as 别名]
# 或者: from sklearn.pipeline import Pipeline [as 别名]
def test_imputation_pipeline_grid_search():
    # Test imputation within a pipeline + gridsearch.
    X = sparse_random_matrix(100, 100, density=0.10)
    missing_values = X.data[0]

    pipeline = Pipeline([('imputer',
                          SimpleImputer(missing_values=missing_values)),
                         ('tree',
                          tree.DecisionTreeRegressor(random_state=0))])

    parameters = {
        'imputer__strategy': ["mean", "median", "most_frequent"]
    }

    Y = sparse_random_matrix(100, 1, density=0.10).toarray()
    gs = GridSearchCV(pipeline, parameters)
    gs.fit(X, Y) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:19,代码来源:test_impute.py


注:本文中的sklearn.pipeline.Pipeline方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。