当前位置: 首页>>代码示例>>Python>>正文


Python neighbors.NearestCentroid方法代码示例

本文整理汇总了Python中sklearn.neighbors.NearestCentroid方法的典型用法代码示例。如果您正苦于以下问题:Python neighbors.NearestCentroid方法的具体用法?Python neighbors.NearestCentroid怎么用?Python neighbors.NearestCentroid使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.neighbors的用法示例。


在下文中一共展示了neighbors.NearestCentroid方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_classification_toy

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_classification_toy():
    # Check classification on a toy dataset, including sparse versions.
    clf = NearestCentroid()
    clf.fit(X, y)
    assert_array_equal(clf.predict(T), true_result)

    # Same test, but with a sparse matrix to fit and test.
    clf = NearestCentroid()
    clf.fit(X_csr, y)
    assert_array_equal(clf.predict(T_csr), true_result)

    # Fit with sparse, test with non-sparse
    clf = NearestCentroid()
    clf.fit(X_csr, y)
    assert_array_equal(clf.predict(T), true_result)

    # Fit with non-sparse, test with sparse
    clf = NearestCentroid()
    clf.fit(X, y)
    assert_array_equal(clf.predict(T_csr), true_result)

    # Fit and predict with non-CSR sparse matrices
    clf = NearestCentroid()
    clf.fit(X_csr.tocoo(), y)
    assert_array_equal(clf.predict(T_csr.tolil()), true_result) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:27,代码来源:test_nearest_centroid.py

示例2: test_objectmapper

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.neighbors.NearestNeighbors,
                      neighbors.NearestNeighbors)
        self.assertIs(df.neighbors.KNeighborsClassifier,
                      neighbors.KNeighborsClassifier)
        self.assertIs(df.neighbors.RadiusNeighborsClassifier,
                      neighbors.RadiusNeighborsClassifier)
        self.assertIs(df.neighbors.KNeighborsRegressor,
                      neighbors.KNeighborsRegressor)
        self.assertIs(df.neighbors.RadiusNeighborsRegressor,
                      neighbors.RadiusNeighborsRegressor)
        self.assertIs(df.neighbors.NearestCentroid, neighbors.NearestCentroid)
        self.assertIs(df.neighbors.BallTree, neighbors.BallTree)
        self.assertIs(df.neighbors.KDTree, neighbors.KDTree)
        self.assertIs(df.neighbors.DistanceMetric, neighbors.DistanceMetric)
        self.assertIs(df.neighbors.KernelDensity, neighbors.KernelDensity) 
开发者ID:pandas-ml,项目名称:pandas-ml,代码行数:19,代码来源:test_neighbors.py

示例3: test_precomputed

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_precomputed():
    clf = NearestCentroid(metric='precomputed')
    with assert_raises(ValueError):
        clf.fit(X, y) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:6,代码来源:test_nearest_centroid.py

示例4: test_iris

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_iris():
    # Check consistency on dataset iris.
    for metric in ('euclidean', 'cosine'):
        clf = NearestCentroid(metric=metric).fit(iris.data, iris.target)
        score = np.mean(clf.predict(iris.data) == iris.target)
        assert score > 0.9, "Failed with score = " + str(score) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:8,代码来源:test_nearest_centroid.py

示例5: test_iris_shrinkage

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_iris_shrinkage():
    # Check consistency on dataset iris, when using shrinkage.
    for metric in ('euclidean', 'cosine'):
        for shrink_threshold in [None, 0.1, 0.5]:
            clf = NearestCentroid(metric=metric,
                                  shrink_threshold=shrink_threshold)
            clf = clf.fit(iris.data, iris.target)
            score = np.mean(clf.predict(iris.data) == iris.target)
            assert score > 0.8, "Failed with score = " + str(score) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:11,代码来源:test_nearest_centroid.py

示例6: test_pickle

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_pickle():
    import pickle

    # classification
    obj = NearestCentroid()
    obj.fit(iris.data, iris.target)
    score = obj.score(iris.data, iris.target)
    s = pickle.dumps(obj)

    obj2 = pickle.loads(s)
    assert_equal(type(obj2), obj.__class__)
    score2 = obj2.score(iris.data, iris.target)
    assert_array_equal(score, score2,
                       "Failed to generate same score"
                       " after pickling (classification).") 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:17,代码来源:test_nearest_centroid.py

示例7: test_shrinkage_threshold_decoded_y

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_shrinkage_threshold_decoded_y():
    clf = NearestCentroid(shrink_threshold=0.01)
    y_ind = np.asarray(y)
    y_ind[y_ind == -1] = 0
    clf.fit(X, y_ind)
    centroid_encoded = clf.centroids_
    clf.fit(X, y)
    assert_array_equal(centroid_encoded, clf.centroids_) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:10,代码来源:test_nearest_centroid.py

示例8: test_predict_translated_data

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_predict_translated_data():
    # Test that NearestCentroid gives same results on translated data

    rng = np.random.RandomState(0)
    X = rng.rand(50, 50)
    y = rng.randint(0, 3, 50)
    noise = rng.rand(50)
    clf = NearestCentroid(shrink_threshold=0.1)
    clf.fit(X, y)
    y_init = clf.predict(X)
    clf = NearestCentroid(shrink_threshold=0.1)
    X_noise = X + noise
    clf.fit(X_noise, y)
    y_translate = clf.predict(X_noise)
    assert_array_equal(y_init, y_translate) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:17,代码来源:test_nearest_centroid.py

示例9: test_manhattan_metric

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_manhattan_metric():
    # Test the manhattan metric.

    clf = NearestCentroid(metric='manhattan')
    clf.fit(X, y)
    dense_centroid = clf.centroids_
    clf.fit(X_csr, y)
    assert_array_equal(clf.centroids_, dense_centroid)
    assert_array_equal(dense_centroid, [[-1, -1], [1, 1]]) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:11,代码来源:test_nearest_centroid.py

示例10: test_plot13

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_plot13(self):
        np.random.seed(seed)
        X, y = iris_data()
        X = X[:, [0, 2]]
        dml = NCMML()
        clf = NearestCentroid()
        dml_plot(X, y, clf, cmap="gist_rainbow", figsize=(15, 8))
        self.newsave()
        dml_plot(X, y, dml=dml, clf=clf, cmap="gist_rainbow", figsize=(15, 8))
        self.newsave()
        dml_pairplots(X, y, dml=dml, clf=clf, cmap="gist_rainbow", figsize=(15, 8))
        self.newsave()
        plt.close() 
开发者ID:jlsuarezdiaz,项目名称:pyDML,代码行数:15,代码来源:test_plot.py

示例11: test_plot16

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_plot16(self):
        np.random.seed(seed)
        X, y = toy_datasets.balls_toy_dataset(centers=[[-1.0, 0.0], [0.0, 0.0], [1.0, 0.0]],
                                              rads=[0.3, 0.3, 0.3], samples=[50, 50, 50],
                                              noise=[0.1, 0.1, 0.1])
        y[y == 2] = 0
        y = y.astype(int)

        ncm = NearestCentroid()
        ncmc = NCMC_Classifier(centroids_num=[2, 1])
        dml_multiplot(X, y, nrow=1, ncol=2, clfs=[ncm, ncmc], cmap='rainbow',
                      subtitles=['NCM', 'NCMC'], figsize=(6, 3))
        self.newsave()
        plt.close() 
开发者ID:jlsuarezdiaz,项目名称:pyDML,代码行数:16,代码来源:test_plot.py

示例12: test_precomputed

# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import NearestCentroid [as 别名]
def test_precomputed():
    clf = NearestCentroid(metric='precomputed')
    with assert_raises(ValueError) as context:
        clf.fit(X, y)
    assert_equal(ValueError, type(context.exception)) 
开发者ID:alvarobartt,项目名称:twitter-stock-recommendation,代码行数:7,代码来源:test_nearest_centroid.py


注:本文中的sklearn.neighbors.NearestCentroid方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。