本文整理汇总了Python中sklearn.neighbors.KernelDensity方法的典型用法代码示例。如果您正苦于以下问题:Python neighbors.KernelDensity方法的具体用法?Python neighbors.KernelDensity怎么用?Python neighbors.KernelDensity使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.neighbors
的用法示例。
在下文中一共展示了neighbors.KernelDensity方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def __init__(self, D_d_sample, D_delta_t_sample, kde_type='scipy_gaussian', bandwidth=1):
"""
:param D_d_sample: 1-d numpy array of angular diameter distances to the lens plane
:param D_delta_t_sample: 1-d numpy array of time-delay distances
kde_type : string
The kernel to use. Valid kernels are
'scipy_gaussian' or
['gaussian'|'tophat'|'epanechnikov'|'exponential'|'linear'|'cosine']
Default is 'gaussian'.
:param bandwidth: width of kernel (in same units as the angular diameter quantities)
"""
values = np.vstack([D_d_sample, D_delta_t_sample])
if kde_type == 'scipy_gaussian':
self._PDF_kernel = stats.gaussian_kde(values)
else:
from sklearn.neighbors import KernelDensity
self._kde = KernelDensity(bandwidth=bandwidth, kernel=kde_type)
values = np.vstack([D_d_sample, D_delta_t_sample])
self._kde.fit(values.T)
self._kde_type = kde_type
示例2: __init__
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def __init__(self, hybrid=False, kernel='gaussian', n_jobs=-1, seed=None, **kwargs):
"""Init Kernel Density Estimation instance."""
self.kernel = kernel
self.n_jobs = n_jobs
self.seed = seed
self.model = KernelDensity(kernel=kernel, **kwargs)
self.bandwidth = self.model.bandwidth
self.hybrid = hybrid
self.ae_net = None # autoencoder network for the case of a hybrid model
self.results = {
'train_time': None,
'test_time': None,
'test_auc': None,
'test_scores': None
}
示例3: gen_exp_name
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def gen_exp_name(model_class, model_kwargs):
"""Generates experiment name from model class and parameters.
:param model_class: (type) the class, one of GaussianMixture, PCAPreDensity or KernelDensity.
:param model_kwargs: (dict) constructor arguments to the class.
:return A string succinctly encoding the class and parameters."""
if model_class == GaussianMixture:
n_components = model_kwargs.get("n_components", 1)
covariance_type = model_kwargs.get("covariance_type", "full")
return f"gmm_{n_components}_components_{covariance_type}"
elif model_class == PCAPreDensity:
if model_kwargs["density_class"] == KernelDensity:
return "pca_kde"
elif model_kwargs["density_class"] == GaussianMixture:
return "pca_gmm"
else:
return "pca_unknown"
elif model_class == KernelDensity:
return "kde"
else:
return "default"
示例4: test_kde_badargs
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_kde_badargs():
assert_raises(ValueError, KernelDensity,
algorithm='blah')
assert_raises(ValueError, KernelDensity,
bandwidth=0)
assert_raises(ValueError, KernelDensity,
kernel='blah')
assert_raises(ValueError, KernelDensity,
metric='blah')
assert_raises(ValueError, KernelDensity,
algorithm='kd_tree', metric='blah')
kde = KernelDensity()
assert_raises(ValueError, kde.fit, np.random.random((200, 10)),
sample_weight=np.random.random((200, 10)))
assert_raises(ValueError, kde.fit, np.random.random((200, 10)),
sample_weight=-np.random.random(200))
示例5: test_pickling
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_pickling(tmpdir, sample_weight):
# Make sure that predictions are the same before and after pickling. Used
# to be a bug because sample_weights wasn't pickled and the resulting tree
# would miss some info.
kde = KernelDensity()
data = np.reshape([1., 2., 3.], (-1, 1))
kde.fit(data, sample_weight=sample_weight)
X = np.reshape([1.1, 2.1], (-1, 1))
scores = kde.score_samples(X)
file_path = str(tmpdir.join('dump.pkl'))
_joblib.dump(kde, file_path)
kde = _joblib.load(file_path)
scores_pickled = kde.score_samples(X)
assert_allclose(scores, scores_pickled)
示例6: kde_sklearn
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def kde_sklearn(data, grid, **kwargs):
"""
Kernel Density Estimation with Scikit-learn
Parameters
----------
data : numpy.array
Data points used to compute a density estimator. It
has `n x p` dimensions, representing n points and p
variables.
grid : numpy.array
Data points at which the desity will be estimated. It
has `m x p` dimensions, representing m points and p
variables.
Returns
-------
out : numpy.array
Density estimate. Has `m x 1` dimensions
"""
kde_skl = KernelDensity(**kwargs)
kde_skl.fit(data)
# score_samples() returns the log-likelihood of the samples
log_pdf = kde_skl.score_samples(grid)
return np.exp(log_pdf)
示例7: test_optuna_search_invalid_param_dist
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_optuna_search_invalid_param_dist():
# type: () -> None
X, y = make_blobs(n_samples=10)
est = KernelDensity()
param_dist = ["kernel", distributions.CategoricalDistribution(("gaussian", "linear"))]
optuna_search = integration.OptunaSearchCV(
est,
param_dist, # type: ignore
cv=3,
error_score="raise",
random_state=0,
return_train_score=True,
)
with pytest.raises(ValueError, match="param_distributions must be a dictionary."):
optuna_search.fit(X)
示例8: test_optuna_search_pruning_without_partial_fit
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_optuna_search_pruning_without_partial_fit():
# type: () -> None
X, y = make_blobs(n_samples=10)
est = KernelDensity()
param_dist = {} # type: ignore
optuna_search = integration.OptunaSearchCV(
est,
param_dist,
cv=3,
enable_pruning=True,
error_score="raise",
random_state=0,
return_train_score=True,
)
with pytest.raises(ValueError, match="estimator must support partial_fit."):
optuna_search.fit(X)
示例9: test_optuna_search_negative_max_iter
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_optuna_search_negative_max_iter():
# type: () -> None
X, y = make_blobs(n_samples=10)
est = KernelDensity()
param_dist = {} # type: ignore
optuna_search = integration.OptunaSearchCV(
est,
param_dist,
cv=3,
max_iter=-1,
error_score="raise",
random_state=0,
return_train_score=True,
)
with pytest.raises(ValueError, match="max_iter must be > 0"):
optuna_search.fit(X)
示例10: test_optuna_search_tuple_instead_of_distribution
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_optuna_search_tuple_instead_of_distribution():
# type: () -> None
X, y = make_blobs(n_samples=10)
est = KernelDensity()
param_dist = {"kernel": ("gaussian", "linear")}
optuna_search = integration.OptunaSearchCV(
est,
param_dist, # type: ignore
cv=3,
error_score="raise",
random_state=0,
return_train_score=True,
)
with pytest.raises(ValueError, match="must be a optuna distribution."):
optuna_search.fit(X)
示例11: test_optuna_search_verbosity
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_optuna_search_verbosity(verbose):
# type: (int) -> None
X, y = make_blobs(n_samples=10)
est = KernelDensity()
param_dist = {} # type: ignore
optuna_search = integration.OptunaSearchCV(
est,
param_dist,
cv=3,
error_score="raise",
random_state=0,
return_train_score=True,
verbose=verbose,
)
optuna_search.fit(X)
示例12: test_optuna_search_subsample
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_optuna_search_subsample():
# type: () -> None
X, y = make_blobs(n_samples=10)
est = KernelDensity()
param_dist = {} # type: ignore
optuna_search = integration.OptunaSearchCV(
est,
param_dist,
cv=3,
error_score="raise",
random_state=0,
return_train_score=True,
subsample=5,
)
optuna_search.fit(X)
示例13: test_objectmapper
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.neighbors.NearestNeighbors,
neighbors.NearestNeighbors)
self.assertIs(df.neighbors.KNeighborsClassifier,
neighbors.KNeighborsClassifier)
self.assertIs(df.neighbors.RadiusNeighborsClassifier,
neighbors.RadiusNeighborsClassifier)
self.assertIs(df.neighbors.KNeighborsRegressor,
neighbors.KNeighborsRegressor)
self.assertIs(df.neighbors.RadiusNeighborsRegressor,
neighbors.RadiusNeighborsRegressor)
self.assertIs(df.neighbors.NearestCentroid, neighbors.NearestCentroid)
self.assertIs(df.neighbors.BallTree, neighbors.BallTree)
self.assertIs(df.neighbors.KDTree, neighbors.KDTree)
self.assertIs(df.neighbors.DistanceMetric, neighbors.DistanceMetric)
self.assertIs(df.neighbors.KernelDensity, neighbors.KernelDensity)
示例14: display
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def display(self, output_filename):
fig, (self.ax) = plt.subplots(1, 1)
self.kde = KernelDensity(kernel='gaussian', bandwidth=self.bandwidth)
has_legend = False
for dataset in self.datasets:
self._display_dataset(dataset)
if dataset.label is not None:
has_legend = True
if self.title is not None:
self.ax.set_xlabel(self.title)
self.ax.set_ylabel('Density')
if has_legend:
self.ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=3,
mode='expand', borderaxespad=0.)
fig.savefig(output_filename)
plt.close(fig)
示例15: test_kde_algorithm_metric_choice
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KernelDensity [as 别名]
def test_kde_algorithm_metric_choice():
# Smoke test for various metrics and algorithms
rng = np.random.RandomState(0)
X = rng.randn(10, 2) # 2 features required for haversine dist.
Y = rng.randn(10, 2)
for algorithm in ['auto', 'ball_tree', 'kd_tree']:
for metric in ['euclidean', 'minkowski', 'manhattan',
'chebyshev', 'haversine']:
if algorithm == 'kd_tree' and metric not in KDTree.valid_metrics:
assert_raises(ValueError, KernelDensity,
algorithm=algorithm, metric=metric)
else:
kde = KernelDensity(algorithm=algorithm, metric=metric)
kde.fit(X)
y_dens = kde.score_samples(Y)
assert_equal(y_dens.shape, Y.shape[:1])