本文整理汇总了Python中sklearn.neighbors.KNeighborsRegressor方法的典型用法代码示例。如果您正苦于以下问题:Python neighbors.KNeighborsRegressor方法的具体用法?Python neighbors.KNeighborsRegressor怎么用?Python neighbors.KNeighborsRegressor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.neighbors
的用法示例。
在下文中一共展示了neighbors.KNeighborsRegressor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_regression
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def test_regression():
# Check regression for various parameter settings.
rng = check_random_state(0)
X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
boston.target[:50],
random_state=rng)
grid = ParameterGrid({"max_samples": [0.5, 1.0],
"max_features": [0.5, 1.0],
"bootstrap": [True, False],
"bootstrap_features": [True, False]})
for base_estimator in [None,
DummyRegressor(),
DecisionTreeRegressor(),
KNeighborsRegressor(),
SVR(gamma='scale')]:
for params in grid:
BaggingRegressor(base_estimator=base_estimator,
random_state=rng,
**params).fit(X_train, y_train).predict(X_test)
示例2: build_ensemble
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def build_ensemble(**kwargs):
"""Generate ensemble."""
ens = SuperLearner(**kwargs)
prep = {'Standard Scaling': [StandardScaler()],
'Min Max Scaling': [MinMaxScaler()],
'No Preprocessing': []}
est = {'Standard Scaling':
[ElasticNet(), Lasso(), KNeighborsRegressor()],
'Min Max Scaling':
[SVR()],
'No Preprocessing':
[RandomForestRegressor(random_state=SEED),
GradientBoostingRegressor()]}
ens.add(est, prep)
ens.add(GradientBoostingRegressor(), meta=True)
return ens
示例3: test_single_estimator
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def test_single_estimator():
# Check singleton ensembles.
rng = check_random_state(0)
X_train, X_test, y_train, y_test = train_test_split(boston.data,
boston.target,
random_state=rng)
clf1 = BaggingRegressor(base_estimator=KNeighborsRegressor(),
n_estimators=1,
bootstrap=False,
bootstrap_features=False,
random_state=rng).fit(X_train, y_train)
clf2 = KNeighborsRegressor().fit(X_train, y_train)
assert_array_almost_equal(clf1.predict(X_test), clf2.predict(X_test))
示例4: test_kneighbors_regressor
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def test_kneighbors_regressor(n_samples=40,
n_features=5,
n_test_pts=10,
n_neighbors=3,
random_state=0):
# Test k-neighbors regression
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features) - 1
y = np.sqrt((X ** 2).sum(1))
y /= y.max()
y_target = y[:n_test_pts]
weight_func = _weight_func
for algorithm in ALGORITHMS:
for weights in ['uniform', 'distance', weight_func]:
knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors,
weights=weights,
algorithm=algorithm)
knn.fit(X, y)
epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = knn.predict(X[:n_test_pts] + epsilon)
assert np.all(abs(y_pred - y_target) < 0.3)
示例5: test_KNeighborsRegressor_multioutput_uniform_weight
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def test_KNeighborsRegressor_multioutput_uniform_weight():
# Test k-neighbors in multi-output regression with uniform weight
rng = check_random_state(0)
n_features = 5
n_samples = 40
n_output = 4
X = rng.rand(n_samples, n_features)
y = rng.rand(n_samples, n_output)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
for algorithm, weights in product(ALGORITHMS, [None, 'uniform']):
knn = neighbors.KNeighborsRegressor(weights=weights,
algorithm=algorithm)
knn.fit(X_train, y_train)
neigh_idx = knn.kneighbors(X_test, return_distance=False)
y_pred_idx = np.array([np.mean(y_train[idx], axis=0)
for idx in neigh_idx])
y_pred = knn.predict(X_test)
assert_equal(y_pred.shape, y_test.shape)
assert_equal(y_pred_idx.shape, y_test.shape)
assert_array_almost_equal(y_pred, y_pred_idx)
示例6: test_kneighbors_regressor_multioutput
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def test_kneighbors_regressor_multioutput(n_samples=40,
n_features=5,
n_test_pts=10,
n_neighbors=3,
random_state=0):
# Test k-neighbors in multi-output regression
rng = np.random.RandomState(random_state)
X = 2 * rng.rand(n_samples, n_features) - 1
y = np.sqrt((X ** 2).sum(1))
y /= y.max()
y = np.vstack([y, y]).T
y_target = y[:n_test_pts]
weights = ['uniform', 'distance', _weight_func]
for algorithm, weights in product(ALGORITHMS, weights):
knn = neighbors.KNeighborsRegressor(n_neighbors=n_neighbors,
weights=weights,
algorithm=algorithm)
knn.fit(X, y)
epsilon = 1E-5 * (2 * rng.rand(1, n_features) - 1)
y_pred = knn.predict(X[:n_test_pts] + epsilon)
assert_equal(y_pred.shape, y_target.shape)
assert np.all(np.abs(y_pred - y_target) < 0.3)
示例7: test_neighbors_iris
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def test_neighbors_iris():
# Sanity checks on the iris dataset
# Puts three points of each label in the plane and performs a
# nearest neighbor query on points near the decision boundary.
for algorithm in ALGORITHMS:
clf = neighbors.KNeighborsClassifier(n_neighbors=1,
algorithm=algorithm)
clf.fit(iris.data, iris.target)
assert_array_equal(clf.predict(iris.data), iris.target)
clf.set_params(n_neighbors=9, algorithm=algorithm)
clf.fit(iris.data, iris.target)
assert np.mean(clf.predict(iris.data) == iris.target) > 0.95
rgs = neighbors.KNeighborsRegressor(n_neighbors=5, algorithm=algorithm)
rgs.fit(iris.data, iris.target)
assert_greater(np.mean(rgs.predict(iris.data).round() == iris.target),
0.95)
示例8: test_33_knn_regressor
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def test_33_knn_regressor(self):
print("\ntest 33 (knn regressor without preprocessing)\n")
X, X_test, y, features, target, test_file = self.data_utility.get_data_for_regression()
model = KNeighborsRegressor()
pipeline_obj = Pipeline([
("model", model)
])
pipeline_obj.fit(X,y)
file_name = 'test33sklearn.pmml'
skl_to_pmml(pipeline_obj, features, target, file_name)
model_name = self.adapa_utility.upload_to_zserver(file_name)
predictions, _ = self.adapa_utility.score_in_zserver(model_name, test_file)
model_pred = pipeline_obj.predict(X_test)
self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True)
示例9: get_points_from_flow_data
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def get_points_from_flow_data(self, x_points, y_points, z_points):
"""
Return the u-value of a set of points from with a FlowData object.
Use a simple nearest neighbor regressor to do internal interpolation.
Args:
x_points (np.array): Array of x-locations of points.
y_points (np.array): Array of y-locations of points.
z_points (np.array): Array of z-locations of points.
Returns:
np.array: Array of u-velocity at specified points.
"""
# print(x_points,y_points,z_points)
X = np.column_stack([self.x, self.y, self.z])
n_neighbors = 1
knn = neighbors.KNeighborsRegressor(n_neighbors)
y_ = knn.fit(X, self.u) # .predict(T)
# Predict new points
T = np.column_stack([x_points, y_points, z_points])
return knn.predict(T)
示例10: __init__
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def __init__(self,
transformer=None,
estimator=None,
normalize=True,
keep_tsne_outputs=False,
**kwargs):
TransformerMixin.__init__(self)
BaseEstimator.__init__(self)
if estimator is None:
estimator = KNeighborsRegressor()
if transformer is None:
transformer = TSNE()
self.estimator = estimator
self.transformer = transformer
self.keep_tsne_outputs = keep_tsne_outputs
if not hasattr(transformer, "fit_transform"):
raise AttributeError(
"transformer {} does not have a 'fit_transform' "
"method.".format(type(transformer)))
if not hasattr(estimator, "predict"):
raise AttributeError("estimator {} does not have a 'predict' "
"method.".format(type(estimator)))
self.normalize = normalize
if kwargs:
self.set_params(**kwargs)
示例11: test_objectmapper
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.neighbors.NearestNeighbors,
neighbors.NearestNeighbors)
self.assertIs(df.neighbors.KNeighborsClassifier,
neighbors.KNeighborsClassifier)
self.assertIs(df.neighbors.RadiusNeighborsClassifier,
neighbors.RadiusNeighborsClassifier)
self.assertIs(df.neighbors.KNeighborsRegressor,
neighbors.KNeighborsRegressor)
self.assertIs(df.neighbors.RadiusNeighborsRegressor,
neighbors.RadiusNeighborsRegressor)
self.assertIs(df.neighbors.NearestCentroid, neighbors.NearestCentroid)
self.assertIs(df.neighbors.BallTree, neighbors.BallTree)
self.assertIs(df.neighbors.KDTree, neighbors.KDTree)
self.assertIs(df.neighbors.DistanceMetric, neighbors.DistanceMetric)
self.assertIs(df.neighbors.KernelDensity, neighbors.KernelDensity)
示例12: plot_kneighbors_regularization
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def plot_kneighbors_regularization():
rnd = np.random.RandomState(42)
x = np.linspace(-3, 3, 100)
y_no_noise = np.sin(4 * x) + x
y = y_no_noise + rnd.normal(size=len(x))
X = x[:, np.newaxis]
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
x_test = np.linspace(-3, 3, 1000)
for n_neighbors, ax in zip([2, 5, 20], axes.ravel()):
kneighbor_regression = KNeighborsRegressor(n_neighbors=n_neighbors)
kneighbor_regression.fit(X, y)
ax.plot(x, y_no_noise, label="true function")
ax.plot(x, y, "o", label="data")
ax.plot(x_test, kneighbor_regression.predict(x_test[:, np.newaxis]),
label="prediction")
ax.legend()
ax.set_title("n_neighbors = %d" % n_neighbors)
示例13: parameterChoosing
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def parameterChoosing(self):
# Set the parameters by cross-validation
tuned_parameters = [{'weights': ['uniform', 'distance'],
'n_neighbors': range(2,100)
}
]
reg = GridSearchCV(neighbors.KNeighborsRegressor(), tuned_parameters, cv=5, scoring='mean_squared_error')
reg.fit(self.X_train, self.y_train)
print "Best parameters set found on development set:\n"
print reg.best_params_
print "Grid scores on development set:\n"
for params, mean_score, scores in reg.grid_scores_:
print "%0.3f (+/-%0.03f) for %r\n" % (mean_score, scores.std() * 2, params)
print reg.scorer_
print "MSE for test data set:"
y_true, y_pred = self.y_test, reg.predict(self.X_test)
print mean_squared_error(y_pred, y_true)
示例14: _get_regressor_object
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def _get_regressor_object(self, action, **func_args):
"""
Return a sklearn estimator object based on the estimator and corresponding parameters
- 'action': str
The sklearn estimator used.
- 'func_args': variable length keyworded argument
The parameters passed to the sklearn estimator.
"""
if action == "linear_regression":
return LinearRegression(**func_args)
elif action == "knn":
return KNeighborsRegressor(**func_args)
elif action == "svm":
return SVR(**func_args)
elif action == "random_forest":
return RandomForestRegressor(**func_args)
elif action == "neural_network":
return MLPRegressor(**func_args)
else:
raise ValueError("The function: {} is not supported by dowhy at the moment.".format(action))
示例15: knn_interp
# 需要导入模块: from sklearn import neighbors [as 别名]
# 或者: from sklearn.neighbors import KNeighborsRegressor [as 别名]
def knn_interp(X, Y, perc):
k_split = int(X.shape[0] * perc)
X_train = X[:k_split]
Y_train = Y[:k_split]
X_test = X[k_split:]
Y_test = Y[k_split:]
n_neighbors = 5
model = neighbors.KNeighborsRegressor(n_neighbors)
print('Fitting...')
model.fit(X_train, Y_train)
print('Predicting...')
Y_predict = model.predict(X_test)
print('Scoring...')
score = model.score(X_test, Y_test)
print('Score:', score)
Y_predict