当前位置: 首页>>代码示例>>Python>>正文


Python sklearn.naive_bayes方法代码示例

本文整理汇总了Python中sklearn.naive_bayes方法的典型用法代码示例。如果您正苦于以下问题:Python sklearn.naive_bayes方法的具体用法?Python sklearn.naive_bayes怎么用?Python sklearn.naive_bayes使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn的用法示例。


在下文中一共展示了sklearn.naive_bayes方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: init_classifier_impl

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import naive_bayes [as 别名]
def init_classifier_impl(field_code: str, init_script: str):
    if init_script is not None:
        init_script = init_script.strip()

    if not init_script:
        from sklearn import tree as sklearn_tree
        return sklearn_tree.DecisionTreeClassifier()

    from sklearn import tree as sklearn_tree
    from sklearn import neural_network as sklearn_neural_network
    from sklearn import neighbors as sklearn_neighbors
    from sklearn import svm as sklearn_svm
    from sklearn import gaussian_process as sklearn_gaussian_process
    from sklearn.gaussian_process import kernels as sklearn_gaussian_process_kernels
    from sklearn import ensemble as sklearn_ensemble
    from sklearn import naive_bayes as sklearn_naive_bayes
    from sklearn import discriminant_analysis as sklearn_discriminant_analysis
    from sklearn import linear_model as sklearn_linear_model

    eval_locals = {
        'sklearn_linear_model': sklearn_linear_model,
        'sklearn_tree': sklearn_tree,
        'sklearn_neural_network': sklearn_neural_network,
        'sklearn_neighbors': sklearn_neighbors,
        'sklearn_svm': sklearn_svm,
        'sklearn_gaussian_process': sklearn_gaussian_process,
        'sklearn_gaussian_process_kernels': sklearn_gaussian_process_kernels,
        'sklearn_ensemble': sklearn_ensemble,
        'sklearn_naive_bayes': sklearn_naive_bayes,
        'sklearn_discriminant_analysis': sklearn_discriminant_analysis
    }
    return eval_script('classifier init script of field {0}'.format(field_code), init_script, eval_locals) 
开发者ID:LexPredict,项目名称:lexpredict-contraxsuite,代码行数:34,代码来源:field_based_ml_field_detection.py

示例2: selection_parameters_for_classfier

# 需要导入模块: import sklearn [as 别名]
# 或者: from sklearn import naive_bayes [as 别名]
def selection_parameters_for_classfier(X,y):

    from sklearn import grid_search

    #paras={ 'n_neighbors':[1,10], 'weights':['uniform', 'distance'], 'algorithm':['auto', 'ball_tree','kd_tree', 'brute'], 'leaf_size':[20,50]}
    #knn = KNeighborsClassifier()

    #naive_bayes
    #nbg = GaussianNB()
    #nbm = MultinomialNB()
    #nbb = BernoulliNB()

    #decision tree
    #paras={ 'criterion':['gini','entropy'], 'splitter':['random', 'best'], 'max_features':[None, 'auto','sqrt', 'log2'], 'min_samples_split':[1,10]}
    #dtree = DecisionTreeClassifier()

    #random forest
    #rforest = RandomForestClassifier()
    #paras={ 'n_estimators':[2,15], 'criterion':['gini','entropy'], 'max_features': ['auto','sqrt', 'log2'], 'min_samples_split':[1,10]}

    #svm
    svmm = svm.SVC()
    paras={'kernel':['rbf','linear','poly']}


    clt =grid_search.GridSearchCV(svmm, paras, cv=5)
    clt.fit(X,y)
    print (clt)
    #print (clt.get_params())
    print (clt.set_params())
    print (clt.score(X,y))

    #scores = cross_val_score(clt,X,y,cv=10)
    #print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))


#this is to get score using cross_validation 
开发者ID:ririhedou,项目名称:dr_droid,代码行数:39,代码来源:GetMLPara.py


注:本文中的sklearn.naive_bayes方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。