本文整理汇总了Python中sklearn.model_selection._validation._fit_and_score方法的典型用法代码示例。如果您正苦于以下问题:Python _validation._fit_and_score方法的具体用法?Python _validation._fit_and_score怎么用?Python _validation._fit_and_score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.model_selection._validation
的用法示例。
在下文中一共展示了_validation._fit_and_score方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _do_fit
# 需要导入模块: from sklearn.model_selection import _validation [as 别名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 别名]
def _do_fit(n_jobs, verbose, pre_dispatch, base_estimator,
X, y, scorer, parameter_iterable, fit_params,
error_score, cv, **kwargs):
groups = kwargs.pop('groups')
# test_score, n_samples, parameters
out = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)(
delayed(_fit_and_score)(
clone(base_estimator), X, y, scorer,
train, test, verbose, parameters,
fit_params=fit_params,
return_train_score=False,
return_n_test_samples=True,
return_times=False,
return_parameters=True,
error_score=error_score)
for parameters in parameter_iterable
for train, test in cv.split(X, y, groups))
# test_score, n_samples, _, parameters
return [(mod[0], mod[1], None, mod[2]) for mod in out]
示例2: fit_score
# 需要导入模块: from sklearn.model_selection import _validation [as 别名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 别名]
def fit_score(self, X, Y):
if isinstance(self.cv, int):
n_folds = self.cv
self.cv = KFold(n_splits=n_folds).split(X)
# Formatting is kinda ugly but provides best debugging view
out = Parallel(n_jobs=self.n_jobs,
verbose=self.verbose,
pre_dispatch=self.pre_dispatch)\
(delayed(_fit_and_score)(clone(self.clf), X, Y, self.metric,
train, test, self.verbose, {},
{}, return_parameters=False,
error_score='raise')
for train, test in self.cv)
# Out is a list of triplet: score, estimator, n_test_samples
scores = list(zip(*out))[0]
return np.mean(scores), np.std(scores)
示例3: test_fit_and_score_working
# 需要导入模块: from sklearn.model_selection import _validation [as 别名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 别名]
def test_fit_and_score_working():
X, y = make_classification(n_samples=30, random_state=0)
clf = SVC(kernel="linear", random_state=0)
train, test = next(ShuffleSplit().split(X))
# Test return_parameters option
fit_and_score_args = [clf, X, y, dict(), train, test, 0]
fit_and_score_kwargs = {'parameters': {'max_iter': 100, 'tol': 0.1},
'fit_params': None,
'return_parameters': True}
result = _fit_and_score(*fit_and_score_args,
**fit_and_score_kwargs)
assert result[-1] == fit_and_score_kwargs['parameters']
示例4: test_fit_and_score_verbosity
# 需要导入模块: from sklearn.model_selection import _validation [as 别名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 别名]
def test_fit_and_score_verbosity(capsys, return_train_score, scorer, expected):
X, y = make_classification(n_samples=30, random_state=0)
clf = SVC(kernel="linear", random_state=0)
train, test = next(ShuffleSplit().split(X))
# test print without train score
fit_and_score_args = [clf, X, y, scorer, train, test, 10, None, None]
fit_and_score_kwargs = {'return_train_score': return_train_score}
_fit_and_score(*fit_and_score_args, **fit_and_score_kwargs)
out, _ = capsys.readouterr()
assert out.split('\n')[1] == expected
示例5: test_fit_and_score_failing
# 需要导入模块: from sklearn.model_selection import _validation [as 别名]
# 或者: from sklearn.model_selection._validation import _fit_and_score [as 别名]
def test_fit_and_score_failing():
# Create a failing classifier to deliberately fail
failing_clf = FailingClassifier(FailingClassifier.FAILING_PARAMETER)
# dummy X data
X = np.arange(1, 10)
y = np.ones(9)
fit_and_score_args = [failing_clf, X, None, dict(), None, None, 0,
None, None]
# passing error score to trigger the warning message
fit_and_score_kwargs = {'error_score': 0}
# check if the warning message type is as expected
assert_warns(FitFailedWarning, _fit_and_score, *fit_and_score_args,
**fit_and_score_kwargs)
# since we're using FailingClassfier, our error will be the following
error_message = "ValueError: Failing classifier failed as required"
# the warning message we're expecting to see
warning_message = ("Estimator fit failed. The score on this train-test "
"partition for these parameters will be set to %f. "
"Details: \n%s" % (fit_and_score_kwargs['error_score'],
error_message))
# check if the same warning is triggered
assert_warns_message(FitFailedWarning, warning_message, _fit_and_score,
*fit_and_score_args, **fit_and_score_kwargs)
# check if warning was raised, with default error_score argument
warning_message = ("From version 0.22, errors during fit will result "
"in a cross validation score of NaN by default. Use "
"error_score='raise' if you want an exception "
"raised or error_score=np.nan to adopt the "
"behavior from version 0.22.")
with pytest.raises(ValueError):
assert_warns_message(FutureWarning, warning_message, _fit_and_score,
*fit_and_score_args)
fit_and_score_kwargs = {'error_score': 'raise'}
# check if exception was raised, with default error_score='raise'
assert_raise_message(ValueError, "Failing classifier failed as required",
_fit_and_score, *fit_and_score_args,
**fit_and_score_kwargs)
# check that functions upstream pass error_score param to _fit_and_score
error_message = ("error_score must be the string 'raise' or a"
" numeric value. (Hint: if using 'raise', please"
" make sure that it has been spelled correctly.)")
assert_raise_message(ValueError, error_message, cross_validate,
failing_clf, X, cv=3, error_score='unvalid-string')
assert_raise_message(ValueError, error_message, cross_val_score,
failing_clf, X, cv=3, error_score='unvalid-string')
assert_raise_message(ValueError, error_message, learning_curve,
failing_clf, X, y, cv=3, error_score='unvalid-string')
assert_raise_message(ValueError, error_message, validation_curve,
failing_clf, X, y, 'parameter',
[FailingClassifier.FAILING_PARAMETER], cv=3,
error_score='unvalid-string')
assert_equal(failing_clf.score(), 0.) # FailingClassifier coverage