当前位置: 首页>>代码示例>>Python>>正文


Python model_selection.KFold方法代码示例

本文整理汇总了Python中sklearn.model_selection.KFold方法的典型用法代码示例。如果您正苦于以下问题:Python model_selection.KFold方法的具体用法?Python model_selection.KFold怎么用?Python model_selection.KFold使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.model_selection的用法示例。


在下文中一共展示了model_selection.KFold方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_kfold_no_shuffle

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_kfold_no_shuffle():
    # Manually check that KFold preserves the data ordering on toy datasets
    X2 = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]

    splits = KFold(2).split(X2[:-1])
    train, test = next(splits)
    assert_array_equal(test, [0, 1])
    assert_array_equal(train, [2, 3])

    train, test = next(splits)
    assert_array_equal(test, [2, 3])
    assert_array_equal(train, [0, 1])

    splits = KFold(2).split(X2)
    train, test = next(splits)
    assert_array_equal(test, [0, 1, 2])
    assert_array_equal(train, [3, 4])

    train, test = next(splits)
    assert_array_equal(test, [3, 4])
    assert_array_equal(train, [0, 1, 2]) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:23,代码来源:test_split.py

示例2: test_TargetEncoder

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_TargetEncoder(generate_data):
    df = generate_data()
    feature_cols = [x for x in df.columns if x != TARGET_COL]
    cat_cols = [x for x in feature_cols if df[x].nunique() < 100]

    te = TargetEncoder()
    X_cat = te.fit_transform(df[cat_cols], df[TARGET_COL])
    print('Without CV:\n{}'.format(X_cat.head()))

    assert X_cat.shape[1] == len(cat_cols)

    cv = KFold(n_splits=N_FOLD, shuffle=True, random_state=RANDOM_SEED)
    te = TargetEncoder(cv=cv)
    X_cat = te.fit_transform(df[cat_cols], df[TARGET_COL])
    print('With CV (fit_transform()):\n{}'.format(X_cat.head()))

    assert X_cat.shape[1] == len(cat_cols)

    te = TargetEncoder(cv=cv)
    te.fit(df[cat_cols], df[TARGET_COL])
    X_cat = te.transform(df[cat_cols])
    print('With CV (fit() and transform() separately):\n{}'.format(X_cat.head()))

    assert X_cat.shape[1] == len(cat_cols) 
开发者ID:jeongyoonlee,项目名称:Kaggler,代码行数:26,代码来源:test_encoders.py

示例3: test_FrequencyEncoder

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_FrequencyEncoder(generate_data):
    df = generate_data()
    feature_cols = [x for x in df.columns if x != TARGET_COL]
    cat_cols = [x for x in feature_cols if df[x].nunique() < 100]

    te = FrequencyEncoder()
    X_cat = te.fit_transform(df[cat_cols])
    print('Without CV:\n{}'.format(X_cat.head()))

    assert X_cat.shape[1] == len(cat_cols)

    cv = KFold(n_splits=N_FOLD, shuffle=True, random_state=RANDOM_SEED)
    te = FrequencyEncoder(cv=cv)
    X_cat = te.fit_transform(df[cat_cols])
    print('With CV (fit_transform()):\n{}'.format(X_cat.head()))

    assert X_cat.shape[1] == len(cat_cols)

    te = FrequencyEncoder(cv=cv)
    te.fit(df[cat_cols])
    X_cat = te.transform(df[cat_cols])
    print('With CV (fit() and transform() separately):\n{}'.format(X_cat.head()))

    assert X_cat.shape[1] == len(cat_cols) 
开发者ID:jeongyoonlee,项目名称:Kaggler,代码行数:26,代码来源:test_encoders.py

示例4: split_trials

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def split_trials(trial_ids, n_splits=5, rng_seed=0):
    """
    Assign each trial to testing or training fold

    :param trial_ids:
    :type trial_ids: array-like
    :param n_splits: one split used for testing; remaining splits used for training
    :type n_splits: int
    :param rng_seed: set random state for shuffling trials
    :type rng_seed: int
    :return: list of dicts of indices with keys `train` and `test`
    """
    from sklearn.model_selection import KFold
    shuffle = True if rng_seed is not None else False
    kf = KFold(n_splits=n_splits, random_state=rng_seed, shuffle=shuffle)
    kf.get_n_splits(trial_ids)
    idxs = [None for _ in range(n_splits)]
    for i, t0 in enumerate(kf.split(trial_ids)):
        idxs[i] = {'train': t0[0], 'test': t0[1]}
    return idxs 
开发者ID:int-brain-lab,项目名称:ibllib,代码行数:22,代码来源:cca.py

示例5: kfold

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def kfold(self, k=5, stratify=False, shuffle=True, seed=33):
        """K-Folds cross validation iterator.

        Parameters
        ----------
        k : int, default 5
        stratify : bool, default False
        shuffle : bool, default True
        seed : int, default 33

        Yields
        -------
        X_train, y_train, X_test, y_test, train_index, test_index
        """
        if stratify:
            kf = StratifiedKFold(n_splits=k, random_state=seed, shuffle=shuffle)
        else:
            kf = KFold(n_splits=k, random_state=seed, shuffle=shuffle)

        for train_index, test_index in kf.split(self.X_train, self.y_train):
            X_train, y_train = idx(self.X_train, train_index), self.y_train[train_index]
            X_test, y_test = idx(self.X_train, test_index), self.y_train[test_index]
            yield X_train, y_train, X_test, y_test, train_index, test_index 
开发者ID:rushter,项目名称:heamy,代码行数:25,代码来源:dataset.py

示例6: test_skip

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_skip():
    df = pd.DataFrame()
    df['id'] = np.arange(10)

    kf = split.Skip(2, KFold(5))
    folds = kf.split(df)

    assert kf.get_n_splits() == 3

    train_index, test_index = next(folds)
    assert np.array_equal(test_index, np.array([4, 5]))

    train_index, test_index = next(folds)
    assert np.array_equal(test_index, np.array([6, 7]))

    train_index, test_index = next(folds)
    assert np.array_equal(test_index, np.array([8, 9]))

    with pytest.raises(StopIteration):
        next(folds) 
开发者ID:nyanp,项目名称:nyaggle,代码行数:22,代码来源:test_split.py

示例7: test_nth

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_nth():
    df = pd.DataFrame()
    df['id'] = np.arange(10)

    kf = split.Nth(3, KFold(5))
    folds = kf.split(df)

    assert kf.get_n_splits() == 1

    train_index, test_index = next(folds)
    assert np.array_equal(test_index, np.array([4, 5]))

    with pytest.raises(StopIteration):
        next(folds)

    kf = split.Nth(1, KFold(5))
    folds = kf.split(df)

    assert kf.get_n_splits() == 1

    train_index, test_index = next(folds)
    assert np.array_equal(test_index, np.array([0, 1]))

    with pytest.raises(StopIteration):
        next(folds) 
开发者ID:nyanp,项目名称:nyaggle,代码行数:27,代码来源:test_split.py

示例8: test_2d_y

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_2d_y():
    # smoke test for 2d y and multi-label
    n_samples = 30
    rng = np.random.RandomState(1)
    X = rng.randint(0, 3, size=(n_samples, 2))
    y = rng.randint(0, 3, size=(n_samples,))
    y_2d = y.reshape(-1, 1)
    y_multilabel = rng.randint(0, 2, size=(n_samples, 3))
    groups = rng.randint(0, 3, size=(n_samples,))
    splitters = [LeaveOneOut(), LeavePOut(p=2), KFold(), StratifiedKFold(),
                 RepeatedKFold(), RepeatedStratifiedKFold(),
                 ShuffleSplit(), StratifiedShuffleSplit(test_size=.5),
                 GroupShuffleSplit(), LeaveOneGroupOut(),
                 LeavePGroupsOut(n_groups=2), GroupKFold(), TimeSeriesSplit(),
                 PredefinedSplit(test_fold=groups)]
    for splitter in splitters:
        list(splitter.split(X, y, groups))
        list(splitter.split(X, y_2d, groups))
        try:
            list(splitter.split(X, y_multilabel, groups))
        except ValueError as e:
            allowed_target_types = ('binary', 'multiclass')
            msg = "Supported target types are: {}. Got 'multilabel".format(
                allowed_target_types)
            assert msg in str(e) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:27,代码来源:test_split.py

示例9: test_shuffle_kfold

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_shuffle_kfold():
    # Check the indices are shuffled properly
    kf = KFold(3)
    kf2 = KFold(3, shuffle=True, random_state=0)
    kf3 = KFold(3, shuffle=True, random_state=1)

    X = np.ones(300)

    all_folds = np.zeros(300)
    for (tr1, te1), (tr2, te2), (tr3, te3) in zip(
            kf.split(X), kf2.split(X), kf3.split(X)):
        for tr_a, tr_b in combinations((tr1, tr2, tr3), 2):
            # Assert that there is no complete overlap
            assert_not_equal(len(np.intersect1d(tr_a, tr_b)), len(tr1))

        # Set all test indices in successive iterations of kf2 to 1
        all_folds[te2] = 1

    # Check that all indices are returned in the different test folds
    assert_equal(sum(all_folds), 300) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:22,代码来源:test_split.py

示例10: test_cv_iterable_wrapper

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_cv_iterable_wrapper():
    kf_iter = KFold(n_splits=5).split(X, y)
    kf_iter_wrapped = check_cv(kf_iter)
    # Since the wrapped iterable is enlisted and stored,
    # split can be called any number of times to produce
    # consistent results.
    np.testing.assert_equal(list(kf_iter_wrapped.split(X, y)),
                            list(kf_iter_wrapped.split(X, y)))
    # If the splits are randomized, successive calls to split yields different
    # results
    kf_randomized_iter = KFold(n_splits=5, shuffle=True).split(X, y)
    kf_randomized_iter_wrapped = check_cv(kf_randomized_iter)
    # numpy's assert_array_equal properly compares nested lists
    np.testing.assert_equal(list(kf_randomized_iter_wrapped.split(X, y)),
                            list(kf_randomized_iter_wrapped.split(X, y)))

    try:
        np.testing.assert_equal(list(kf_iter_wrapped.split(X, y)),
                                list(kf_randomized_iter_wrapped.split(X, y)))
        splits_are_equal = True
    except AssertionError:
        splits_are_equal = False
    assert not splits_are_equal, (
        "If the splits are randomized, "
        "successive calls to split should yield different results") 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:27,代码来源:test_split.py

示例11: test_cross_val_score_mask

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_cross_val_score_mask():
    # test that cross_val_score works with boolean masks
    svm = SVC(kernel="linear")
    iris = load_iris()
    X, y = iris.data, iris.target
    kfold = KFold(5)
    scores_indices = cross_val_score(svm, X, y, cv=kfold)
    kfold = KFold(5)
    cv_masks = []
    for train, test in kfold.split(X, y):
        mask_train = np.zeros(len(y), dtype=np.bool)
        mask_test = np.zeros(len(y), dtype=np.bool)
        mask_train[train] = 1
        mask_test[test] = 1
        cv_masks.append((train, test))
    scores_masks = cross_val_score(svm, X, y, cv=cv_masks)
    assert_array_equal(scores_indices, scores_masks) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:19,代码来源:test_validation.py

示例12: test_learning_curve_with_boolean_indices

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_learning_curve_with_boolean_indices():
    X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
                               n_redundant=0, n_classes=2,
                               n_clusters_per_class=1, random_state=0)
    estimator = MockImprovingEstimator(20)
    cv = KFold(n_splits=3)
    train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10))
    assert_array_equal(train_sizes, np.linspace(2, 20, 10))
    assert_array_almost_equal(train_scores.mean(axis=1),
                              np.linspace(1.9, 1.0, 10))
    assert_array_almost_equal(test_scores.mean(axis=1),
                              np.linspace(0.1, 1.0, 10))


# 0.23. warning about tol not having its correct default value. 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:18,代码来源:test_validation.py

示例13: check_cross_val_predict_binary

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def check_cross_val_predict_binary(est, X, y, method):
    """Helper for tests of cross_val_predict with binary classification"""
    cv = KFold(n_splits=3, shuffle=False)

    # Generate expected outputs
    if y.ndim == 1:
        exp_shape = (len(X),) if method == 'decision_function' else (len(X), 2)
    else:
        exp_shape = y.shape
    expected_predictions = np.zeros(exp_shape)
    for train, test in cv.split(X, y):
        est = clone(est).fit(X[train], y[train])
        expected_predictions[test] = getattr(est, method)(X[test])

    # Check actual outputs for several representations of y
    for tg in [y, y + 1, y - 2, y.astype('str')]:
        assert_allclose(cross_val_predict(est, X, tg, method=method, cv=cv),
                        expected_predictions) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:20,代码来源:test_validation.py

示例14: test_deprecated_grid_search_iid

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_deprecated_grid_search_iid():
    depr_message = ("The default of the `iid` parameter will change from True "
                    "to False in version 0.22")
    X, y = make_blobs(n_samples=54, random_state=0, centers=2)
    grid = GridSearchCV(SVC(gamma='scale', random_state=0),
                        param_grid={'C': [10]}, cv=3)
    # no warning with equally sized test sets
    assert_no_warnings(grid.fit, X, y)

    grid = GridSearchCV(SVC(gamma='scale', random_state=0),
                        param_grid={'C': [10]}, cv=5)
    # warning because 54 % 5 != 0
    assert_warns_message(DeprecationWarning, depr_message, grid.fit, X, y)

    grid = GridSearchCV(SVC(gamma='scale', random_state=0),
                        param_grid={'C': [10]}, cv=2)
    # warning because stratification into two classes and 27 % 2 != 0
    assert_warns_message(DeprecationWarning, depr_message, grid.fit, X, y)

    grid = GridSearchCV(SVC(gamma='scale', random_state=0),
                        param_grid={'C': [10]}, cv=KFold(2))
    # no warning because no stratification and 54 % 2 == 0
    assert_no_warnings(grid.fit, X, y) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:25,代码来源:test_search.py

示例15: test_empty_cv_iterator_error

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import KFold [as 别名]
def test_empty_cv_iterator_error():
    # Use global X, y

    # create cv
    cv = KFold(n_splits=3).split(X)

    # pop all of it, this should cause the expected ValueError
    [u for u in cv]
    # cv is empty now

    train_size = 100
    ridge = RandomizedSearchCV(Ridge(), {'alpha': [1e-3, 1e-2, 1e-1]},
                               cv=cv, n_jobs=-1)

    # assert that this raises an error
    with pytest.raises(ValueError,
                       match='No fits were performed. '
                             'Was the CV iterator empty\\? '
                             'Were there no candidates\\?'):
        ridge.fit(X[:train_size], y[:train_size]) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:22,代码来源:test_search.py


注:本文中的sklearn.model_selection.KFold方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。