当前位置: 首页>>代码示例>>Python>>正文


Python model_selection.GroupShuffleSplit方法代码示例

本文整理汇总了Python中sklearn.model_selection.GroupShuffleSplit方法的典型用法代码示例。如果您正苦于以下问题:Python model_selection.GroupShuffleSplit方法的具体用法?Python model_selection.GroupShuffleSplit怎么用?Python model_selection.GroupShuffleSplit使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.model_selection的用法示例。


在下文中一共展示了model_selection.GroupShuffleSplit方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_2d_y

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def test_2d_y():
    # smoke test for 2d y and multi-label
    n_samples = 30
    rng = np.random.RandomState(1)
    X = rng.randint(0, 3, size=(n_samples, 2))
    y = rng.randint(0, 3, size=(n_samples,))
    y_2d = y.reshape(-1, 1)
    y_multilabel = rng.randint(0, 2, size=(n_samples, 3))
    groups = rng.randint(0, 3, size=(n_samples,))
    splitters = [LeaveOneOut(), LeavePOut(p=2), KFold(), StratifiedKFold(),
                 RepeatedKFold(), RepeatedStratifiedKFold(),
                 ShuffleSplit(), StratifiedShuffleSplit(test_size=.5),
                 GroupShuffleSplit(), LeaveOneGroupOut(),
                 LeavePGroupsOut(n_groups=2), GroupKFold(), TimeSeriesSplit(),
                 PredefinedSplit(test_fold=groups)]
    for splitter in splitters:
        list(splitter.split(X, y, groups))
        list(splitter.split(X, y_2d, groups))
        try:
            list(splitter.split(X, y_multilabel, groups))
        except ValueError as e:
            allowed_target_types = ('binary', 'multiclass')
            msg = "Supported target types are: {}. Got 'multilabel".format(
                allowed_target_types)
            assert msg in str(e) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:27,代码来源:test_split.py

示例2: test_group_shuffle_split_default_test_size

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def test_group_shuffle_split_default_test_size(train_size, exp_train,
                                               exp_test):
    # Check that the default value has the expected behavior, i.e. 0.2 if both
    # unspecified or complement train_size unless both are specified.
    X = np.ones(10)
    y = np.ones(10)
    groups = range(10)

    X_train, X_test = next(GroupShuffleSplit(train_size=train_size)
                           .split(X, y, groups))

    assert len(X_train) == exp_train
    assert len(X_test) == exp_test 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:15,代码来源:test_split.py

示例3: test_group_shuffle_split

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def test_group_shuffle_split():
    for groups_i in test_groups:
        X = y = np.ones(len(groups_i))
        n_splits = 6
        test_size = 1. / 3
        slo = GroupShuffleSplit(n_splits, test_size=test_size, random_state=0)

        # Make sure the repr works
        repr(slo)

        # Test that the length is correct
        assert_equal(slo.get_n_splits(X, y, groups=groups_i), n_splits)

        l_unique = np.unique(groups_i)
        l = np.asarray(groups_i)

        for train, test in slo.split(X, y, groups=groups_i):
            # First test: no train group is in the test set and vice versa
            l_train_unique = np.unique(l[train])
            l_test_unique = np.unique(l[test])
            assert not np.any(np.in1d(l[train], l_test_unique))
            assert not np.any(np.in1d(l[test], l_train_unique))

            # Second test: train and test add up to all the data
            assert_equal(l[train].size + l[test].size, l.size)

            # Third test: train and test are disjoint
            assert_array_equal(np.intersect1d(train, test), [])

            # Fourth test:
            # unique train and test groups are correct, +- 1 for rounding error
            assert abs(len(l_test_unique) -
                       round(test_size * len(l_unique))) <= 1
            assert abs(len(l_train_unique) -
                       round((1.0 - test_size) * len(l_unique))) <= 1 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:37,代码来源:test_split.py

示例4: train_test_split_groups

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def train_test_split_groups(X, *, val_size, groups=None, **kwargs):
    split_class = (ShuffleSplit if groups is None else GroupShuffleSplit)
    split = split_class(test_size=val_size, **kwargs)
    train, val = next(split.split(X=X, groups=groups))
    return X[train], X[val] 
开发者ID:neuro-ml,项目名称:deep_pipe,代码行数:7,代码来源:base.py

示例5: train_test_split_with_empty_fraction_with_groups

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def train_test_split_with_empty_fraction_with_groups(df,
                                                     groups,
                                                     empty_fraction,
                                                     test_size,
                                                     shuffle=True, random_state=1234):
    cv = GroupShuffleSplit(n_splits=2, test_size=test_size, random_state=random_state)

    for train_inds, test_inds in cv.split(df.values, groups=groups.values):
        train, test = df.iloc[train_inds], df.iloc[test_inds]
        break

    empty_train, empty_test = train[train['is_not_empty'] == 0], test[test['is_not_empty'] == 0]
    non_empty_train, non_empty_test = train[train['is_not_empty'] == 1], test[test['is_not_empty'] == 1]

    test_empty_size = int(test_size * empty_fraction)
    test_non_empty_size = int(test_size * (1.0 - empty_fraction))

    empty_test = empty_test.sample(test_empty_size, random_state=random_state)
    non_empty_test = non_empty_test.sample(test_non_empty_size, random_state=random_state)

    train = pd.concat([empty_train, non_empty_train], axis=0).sample(frac=1, random_state=random_state)
    test = pd.concat([empty_test, non_empty_test], axis=0)

    if shuffle:
        train = train.sample(frac=1, random_state=random_state)
        test = test.sample(frac=1, random_state=random_state)

    return train, test 
开发者ID:minerva-ml,项目名称:open-solution-ship-detection,代码行数:30,代码来源:misc.py

示例6: test_objectmapper

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])

        # Splitter Classes
        self.assertIs(df.model_selection.KFold, ms.KFold)
        self.assertIs(df.model_selection.GroupKFold, ms.GroupKFold)
        self.assertIs(df.model_selection.StratifiedKFold, ms.StratifiedKFold)

        self.assertIs(df.model_selection.LeaveOneGroupOut, ms.LeaveOneGroupOut)
        self.assertIs(df.model_selection.LeavePGroupsOut, ms.LeavePGroupsOut)
        self.assertIs(df.model_selection.LeaveOneOut, ms.LeaveOneOut)
        self.assertIs(df.model_selection.LeavePOut, ms.LeavePOut)

        self.assertIs(df.model_selection.ShuffleSplit, ms.ShuffleSplit)
        self.assertIs(df.model_selection.GroupShuffleSplit,
                      ms.GroupShuffleSplit)
        # self.assertIs(df.model_selection.StratifiedShuffleSplit,
        #               ms.StratifiedShuffleSplit)
        self.assertIs(df.model_selection.PredefinedSplit, ms.PredefinedSplit)
        self.assertIs(df.model_selection.TimeSeriesSplit, ms.TimeSeriesSplit)

        # Splitter Functions

        # Hyper-parameter optimizers
        self.assertIs(df.model_selection.GridSearchCV, ms.GridSearchCV)
        self.assertIs(df.model_selection.RandomizedSearchCV, ms.RandomizedSearchCV)
        self.assertIs(df.model_selection.ParameterGrid, ms.ParameterGrid)
        self.assertIs(df.model_selection.ParameterSampler, ms.ParameterSampler)

        # Model validation 
开发者ID:pandas-ml,项目名称:pandas-ml,代码行数:32,代码来源:test_model_selection.py

示例7: test_objectmapper_abbr

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def test_objectmapper_abbr(self):
        df = pdml.ModelFrame([])

        # Splitter Classes
        self.assertIs(df.ms.KFold, ms.KFold)
        self.assertIs(df.ms.GroupKFold, ms.GroupKFold)
        self.assertIs(df.ms.StratifiedKFold, ms.StratifiedKFold)

        self.assertIs(df.ms.LeaveOneGroupOut, ms.LeaveOneGroupOut)
        self.assertIs(df.ms.LeavePGroupsOut, ms.LeavePGroupsOut)
        self.assertIs(df.ms.LeaveOneOut, ms.LeaveOneOut)
        self.assertIs(df.ms.LeavePOut, ms.LeavePOut)

        self.assertIs(df.ms.ShuffleSplit, ms.ShuffleSplit)
        self.assertIs(df.ms.GroupShuffleSplit,
                      ms.GroupShuffleSplit)
        # self.assertIs(df.ms.StratifiedShuffleSplit,
        #               ms.StratifiedShuffleSplit)
        self.assertIs(df.ms.PredefinedSplit, ms.PredefinedSplit)
        self.assertIs(df.ms.TimeSeriesSplit, ms.TimeSeriesSplit)

        # Splitter Functions

        # Hyper-parameter optimizers
        self.assertIs(df.ms.GridSearchCV, ms.GridSearchCV)
        self.assertIs(df.ms.RandomizedSearchCV, ms.RandomizedSearchCV)
        self.assertIs(df.ms.ParameterGrid, ms.ParameterGrid)
        self.assertIs(df.ms.ParameterSampler, ms.ParameterSampler)

        # Model validation 
开发者ID:pandas-ml,项目名称:pandas-ml,代码行数:32,代码来源:test_model_selection.py

示例8: test_group_shuffle_split

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def test_group_shuffle_split():
    for groups_i in test_groups:
        X = y = np.ones(len(groups_i))
        n_splits = 6
        test_size = 1. / 3
        slo = GroupShuffleSplit(n_splits, test_size=test_size, random_state=0)

        # Make sure the repr works
        repr(slo)

        # Test that the length is correct
        assert_equal(slo.get_n_splits(X, y, groups=groups_i), n_splits)

        l_unique = np.unique(groups_i)
        l = np.asarray(groups_i)

        for train, test in slo.split(X, y, groups=groups_i):
            # First test: no train group is in the test set and vice versa
            l_train_unique = np.unique(l[train])
            l_test_unique = np.unique(l[test])
            assert_false(np.any(np.in1d(l[train], l_test_unique)))
            assert_false(np.any(np.in1d(l[test], l_train_unique)))

            # Second test: train and test add up to all the data
            assert_equal(l[train].size + l[test].size, l.size)

            # Third test: train and test are disjoint
            assert_array_equal(np.intersect1d(train, test), [])

            # Fourth test:
            # unique train and test groups are correct, +- 1 for rounding error
            assert_true(abs(len(l_test_unique) -
                            round(test_size * len(l_unique))) <= 1)
            assert_true(abs(len(l_train_unique) -
                            round((1.0 - test_size) * len(l_unique))) <= 1) 
开发者ID:alvarobartt,项目名称:twitter-stock-recommendation,代码行数:37,代码来源:test_split.py

示例9: test_train_test_default_warning

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def test_train_test_default_warning():
    assert_warns(FutureWarning, ShuffleSplit, train_size=0.75)
    assert_warns(FutureWarning, GroupShuffleSplit, train_size=0.75)
    assert_warns(FutureWarning, StratifiedShuffleSplit, train_size=0.75)
    assert_warns(FutureWarning, train_test_split, range(3),
                 train_size=0.75) 
开发者ID:alvarobartt,项目名称:twitter-stock-recommendation,代码行数:8,代码来源:test_split.py

示例10: temp

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def temp(samples):
    from sklearn import model_selection
    from ibeis.algo.verif import sklearn_utils
    def check_balance(idxs):
        # from sklearn.utils.fixes import bincount
        print('-------')
        for count, (test, train) in enumerate(idxs):
            print('split %r' % (count))
            groups_train = set(groups.take(train))
            groups_test = set(groups.take(test))
            n_group_isect = len(groups_train.intersection(groups_test))
            y_train_freq = bincount(y.take(train))
            y_test_freq = bincount(y.take(test))
            y_test_ratio = y_test_freq / y_test_freq.sum()
            y_train_ratio = y_train_freq / y_train_freq.sum()
            balance_error = np.sum((y_test_ratio - y_train_ratio) ** 2)
            print('n_group_isect = %r' % (n_group_isect,))
            print('y_test_ratio = %r' % (y_test_ratio,))
            print('y_train_ratio = %r' % (y_train_ratio,))
            print('balance_error = %r' % (balance_error,))

    X = np.empty((len(samples), 0))
    y = samples.encoded_1d().values
    groups = samples.group_ids

    n_splits = 3

    splitter = model_selection.GroupShuffleSplit(n_splits=n_splits)
    idxs = list(splitter.split(X=X, y=y, groups=groups))
    check_balance(idxs)

    splitter = model_selection.GroupKFold(n_splits=n_splits)
    idxs = list(splitter.split(X=X, y=y, groups=groups))
    check_balance(idxs)

    splitter = model_selection.StratifiedKFold(n_splits=n_splits)
    idxs = list(splitter.split(X=X, y=y, groups=groups))
    check_balance(idxs)

    splitter = sklearn_utils.StratifiedGroupKFold(n_splits=n_splits)
    idxs = list(splitter.split(X=X, y=y, groups=groups))
    check_balance(idxs) 
开发者ID:Erotemic,项目名称:ibeis,代码行数:44,代码来源:sklearn_utils.py

示例11: artist_conditional_split

# 需要导入模块: from sklearn import model_selection [as 别名]
# 或者: from sklearn.model_selection import GroupShuffleSplit [as 别名]
def artist_conditional_split(trackid_list=None, test_size=0.15, num_splits=5,
                             random_state=None, artist_index=None):
    """Create artist-conditional train-test splits.
    The same artist (as defined by the artist_index) cannot appear
    in both the training and testing set.

    Parameters
    ----------
    trackid_list : list or None, default=None
        List of trackids to use in train-test split. If None, uses all tracks
    test_size : float, default=0.15
        Fraction of tracks to use in test set. The test set will be as close
        as possible in size to this value, but it may not be exact due to the
        artist-conditional constraint.
    num_splits : int, default=5
        Number of random splits to create
    random_state : int or None, default=None
        A random state to optionally reproduce the same random split.
    artist_index : dict or None, default=None
        Dictionary mapping each track id in trackid_list to a string that
        uniquely identifies each artist.
        If None, uses the predefined index ARTIST_INDEX.

    Returns
    -------
    splits : list of dicts
        List of length num_splits of train/test split dictionaries. Each
        dictionary has the keys 'train' and 'test', each which map to lists of
        trackids.

    """
    if trackid_list is None:
        trackid_list = TRACK_LIST_V1

    if artist_index is None:
        artist_index = ARTIST_INDEX

    artists = np.asarray([ARTIST_INDEX[trackid] for trackid in trackid_list])

    splitter = GroupShuffleSplit(n_splits=num_splits,
                                 random_state=random_state,
                                 test_size=test_size)

    trackid_array = np.array(trackid_list)
    splits = []
    for train, test in splitter.split(trackid_array, groups=artists):
        splits.append({
            'train': list(trackid_array[train]),
            'test': list(trackid_array[test])
        })

    return splits 
开发者ID:marl,项目名称:medleydb,代码行数:54,代码来源:utils.py


注:本文中的sklearn.model_selection.GroupShuffleSplit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。