本文整理汇总了Python中sklearn.metrics.scorer.check_scoring方法的典型用法代码示例。如果您正苦于以下问题:Python scorer.check_scoring方法的具体用法?Python scorer.check_scoring怎么用?Python scorer.check_scoring使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.metrics.scorer
的用法示例。
在下文中一共展示了scorer.check_scoring方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _optimize_n_neighbors
# 需要导入模块: from sklearn.metrics import scorer [as 别名]
# 或者: from sklearn.metrics.scorer import check_scoring [as 别名]
def _optimize_n_neighbors(self, X, y):
print('Auto optimizing n_neighbors using ' + str(self.n_neighbor_candidates))
X_train, X_validate, y_train, y_validate = self._get_split(X, y)
estimator = copy.copy(self)
estimator.auto_optimize_k = False
estimator.fit(X_train, y_train)
scorer = check_scoring(estimator, scoring=self.scoring)
configs = []
for n_neighbors in self.n_neighbor_candidates:
estimator.n_neighbors = n_neighbors
score = scorer(estimator, X_validate, y_validate)
print('N_neighbors = ' + str(n_neighbors) + ' score: ' + str(self.scoring) + ' ' + str(score))
configs.append((n_neighbors, score))
configs = sorted(configs, key=lambda i: i[1], reverse=True)
print('Configs in order of score: ')
pprint.pprint(configs)
self.n_neighbors = configs[0][0]
示例2: test_cross_validate
# 需要导入模块: from sklearn.metrics import scorer [as 别名]
# 或者: from sklearn.metrics.scorer import check_scoring [as 别名]
def test_cross_validate():
# Compute train and test mse/r2 scores
cv = KFold(n_splits=5)
# Regression
X_reg, y_reg = make_regression(n_samples=30, random_state=0)
reg = Ridge(random_state=0)
# Classification
X_clf, y_clf = make_classification(n_samples=30, random_state=0)
clf = SVC(kernel="linear", random_state=0)
for X, y, est in ((X_reg, y_reg, reg), (X_clf, y_clf, clf)):
# It's okay to evaluate regression metrics on classification too
mse_scorer = check_scoring(est, 'neg_mean_squared_error')
r2_scorer = check_scoring(est, 'r2')
train_mse_scores = []
test_mse_scores = []
train_r2_scores = []
test_r2_scores = []
fitted_estimators = []
for train, test in cv.split(X, y):
est = clone(reg).fit(X[train], y[train])
train_mse_scores.append(mse_scorer(est, X[train], y[train]))
train_r2_scores.append(r2_scorer(est, X[train], y[train]))
test_mse_scores.append(mse_scorer(est, X[test], y[test]))
test_r2_scores.append(r2_scorer(est, X[test], y[test]))
fitted_estimators.append(est)
train_mse_scores = np.array(train_mse_scores)
test_mse_scores = np.array(test_mse_scores)
train_r2_scores = np.array(train_r2_scores)
test_r2_scores = np.array(test_r2_scores)
fitted_estimators = np.array(fitted_estimators)
scores = (train_mse_scores, test_mse_scores, train_r2_scores,
test_r2_scores, fitted_estimators)
check_cross_validate_single_metric(est, X, y, scores)
check_cross_validate_multi_metric(est, X, y, scores)
示例3: cross_val_score
# 需要导入模块: from sklearn.metrics import scorer [as 别名]
# 或者: from sklearn.metrics.scorer import check_scoring [as 别名]
def cross_val_score(
estimator,
X,
y=None,
groups=None,
scoring=None,
cv=None,
n_jobs=1,
verbose=0,
fit_params=None,
pre_dispatch="2*n_jobs",
):
"""
Evaluate a score by cross-validation
"""
if not isinstance(scoring, (list, tuple)):
scoring = [scoring]
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
splits = list(cv.split(X, y, groups))
scorer = [check_scoring(estimator, scoring=s) for s in scoring]
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
scores = parallel(
delayed(_fit_and_score)(
clone(estimator), X, y, scorer, train, test, verbose, None, fit_params
)
for train, test in splits
)
group_order = []
if hasattr(cv, "groups"):
group_order = [np.array(cv.groups)[test].tolist()[0] for _, test in splits]
return np.squeeze(np.array(scores)), group_order
示例4: _score
# 需要导入模块: from sklearn.metrics import scorer [as 别名]
# 或者: from sklearn.metrics.scorer import check_scoring [as 别名]
def _score(self, X, y, scoring=None, clf=None):
from sklearn.model_selection._validation import _score
if scoring is None:
scoring = self._scorer
if clf is None:
clf = self._estimator
return _score(clf, X, y, check_scoring(clf, scoring=scoring))
示例5: test_cross_validate
# 需要导入模块: from sklearn.metrics import scorer [as 别名]
# 或者: from sklearn.metrics.scorer import check_scoring [as 别名]
def test_cross_validate():
# Compute train and test mse/r2 scores
cv = KFold(n_splits=5)
# Regression
X_reg, y_reg = make_regression(n_samples=30, random_state=0)
reg = Ridge(random_state=0)
# Classification
X_clf, y_clf = make_classification(n_samples=30, random_state=0)
clf = SVC(kernel="linear", random_state=0)
for X, y, est in ((X_reg, y_reg, reg), (X_clf, y_clf, clf)):
# It's okay to evaluate regression metrics on classification too
mse_scorer = check_scoring(est, 'neg_mean_squared_error')
r2_scorer = check_scoring(est, 'r2')
train_mse_scores = []
test_mse_scores = []
train_r2_scores = []
test_r2_scores = []
for train, test in cv.split(X, y):
est = clone(reg).fit(X[train], y[train])
train_mse_scores.append(mse_scorer(est, X[train], y[train]))
train_r2_scores.append(r2_scorer(est, X[train], y[train]))
test_mse_scores.append(mse_scorer(est, X[test], y[test]))
test_r2_scores.append(r2_scorer(est, X[test], y[test]))
train_mse_scores = np.array(train_mse_scores)
test_mse_scores = np.array(test_mse_scores)
train_r2_scores = np.array(train_r2_scores)
test_r2_scores = np.array(test_r2_scores)
scores = (train_mse_scores, test_mse_scores, train_r2_scores,
test_r2_scores)
yield check_cross_validate_single_metric, est, X, y, scores
yield check_cross_validate_multi_metric, est, X, y, scores
示例6: permutation_test_score
# 需要导入模块: from sklearn.metrics import scorer [as 别名]
# 或者: from sklearn.metrics.scorer import check_scoring [as 别名]
def permutation_test_score(
estimator,
X,
y,
groups=None,
cv=None,
n_permutations=100,
n_jobs=1,
random_state=0,
verbose=0,
scoring=None,
):
"""
Evaluate the significance of a cross-validated score with permutations,
as in test 1 of [Ojala2010]_.
A modification of original sklearn's permutation test score function
to evaluate p-value outside this function, so that the score can be
reused from outside.
.. [Ojala2010] Ojala and Garriga. Permutation Tests for Studying Classifier
Performance. The Journal of Machine Learning Research (2010)
vol. 11
"""
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
scorer = check_scoring(estimator, scoring=scoring)
random_state = check_random_state(random_state)
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
permutation_scores = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_permutation_test_score)(
clone(estimator), X, _shuffle(y, groups, random_state), groups, cv, scorer
)
for _ in range(n_permutations)
)
permutation_scores = np.array(permutation_scores)
return permutation_scores
示例7: cross_val_score_track_trials
# 需要导入模块: from sklearn.metrics import scorer [as 别名]
# 或者: from sklearn.metrics.scorer import check_scoring [as 别名]
def cross_val_score_track_trials(estimator, X, y=None, scoring=accuracy_score, cv=5, args_to_scorer=None):
"""
Use the given estimator to perform fit and predict for splits defined by 'cv' and compute the given score on
each of the splits.
Parameters
----------
estimator: A valid sklearn_wrapper estimator
X, y: Valid data and target values that work with the estimator
scoring: string or a scorer object created using
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html#sklearn.metrics.make_scorer.
A string from sklearn.metrics.SCORERS.keys() can be used or a scorer created from one of
sklearn.metrics (https://scikit-learn.org/stable/modules/classes.html#module-sklearn.metrics).
A completely custom scorer object can be created from a python function following the example at
https://scikit-learn.org/stable/modules/model_evaluation.html
The metric has to return a scalar value,
cv: an integer or an object that has a split function as a generator yielding (train, test) splits as arrays of indices.
Integer value is used as number of folds in sklearn.model_selection.StratifiedKFold, default is 5.
Note that any of the iterators from https://scikit-learn.org/stable/modules/cross_validation.html#cross-validation-iterators can be used here.
args_to_scorer: A dictionary of additional keyword arguments to pass to the scorer.
Used for cases where the scorer has a signature such as ``scorer(estimator, X, y, **kwargs)``.
Returns
-------
cv_results: a list of scores corresponding to each cross validation fold
"""
if isinstance(cv, int):
cv = StratifiedKFold(cv)
if args_to_scorer is None:
args_to_scorer={}
scorer = check_scoring(estimator, scoring=scoring)
cv_results:List[float] = []
log_loss_results = []
time_results = []
for train, test in cv.split(X, y):
X_train, y_train = split_with_schemas(estimator, X, y, train)
X_test, y_test = split_with_schemas(estimator, X, y, test, train)
start = time.time()
#Not calling sklearn.base.clone() here, because:
# (1) For Lale pipelines, clone() calls the pipeline constructor
# with edges=None, so the resulting topology is incorrect.
# (2) For Lale individual operators, the fit() method already
# clones the impl object, so cloning again is redundant.
trained = estimator.fit(X_train, y_train)
score_value = scorer(trained, X_test, y_test, **args_to_scorer)
execution_time = time.time() - start
# not all estimators have predict probability
try:
y_pred_proba = trained.predict_proba(X_test)
logloss = log_loss(y_true=y_test, y_pred=y_pred_proba)
log_loss_results.append(logloss)
except BaseException:
logger.debug("Warning, log loss cannot be computed")
cv_results.append(score_value)
time_results.append(execution_time)
result = np.array(cv_results).mean(), np.array(log_loss_results).mean(), np.array(execution_time).mean()
return result
示例8: fit
# 需要导入模块: from sklearn.metrics import scorer [as 别名]
# 或者: from sklearn.metrics.scorer import check_scoring [as 别名]
def fit(self, X_train, y_train):
self.cv = check_cv(self.cv, y = y_train, classifier=True) #TODO: Replace the classifier flag value by using tags?
def smac_train_test(trainable, X_train, y_train):
try:
cv_score, logloss, execution_time = cross_val_score_track_trials(trainable, X_train, y_train, cv=self.cv, scoring=self.scoring)
logger.debug("Successful trial of SMAC")
except BaseException as e:
#If there is any error in cross validation, use the score based on a random train-test split as the evaluation criterion
if self.handle_cv_failure:
X_train_part, X_validation, y_train_part, y_validation = train_test_split(X_train, y_train, test_size=0.20)
start = time.time()
trained = trainable.fit(X_train_part, y_train_part)
scorer = check_scoring(trainable, scoring=self.scoring)
cv_score = scorer(trained, X_validation, y_validation)
execution_time = time.time() - start
y_pred_proba = trained.predict_proba(X_validation)
try:
logloss = log_loss(y_true=y_validation, y_pred=y_pred_proba)
except BaseException:
logloss = 0
logger.debug("Warning, log loss cannot be computed")
else:
logger.debug("Error {} with pipeline:{}".format(e, trainable.to_json()))
raise e
return cv_score, logloss, execution_time
def f(trainable):
return_dict = {}
try:
score, logloss, execution_time = smac_train_test(trainable, X_train=X_train, y_train=y_train)
return_dict = {
'loss': self.best_score - score,
'time': execution_time,
'log_loss': logloss
}
except BaseException as e:
logger.warning(f"Exception caught in SMACCV:{type(e)}, {traceback.format_exc()}, SMAC will set a cost_for_crash to MAXINT.")
raise e
return return_dict['loss']
try :
smac = orig_SMAC(scenario=self.scenario, rng=np.random.RandomState(42),
tae_runner=lale_op_smac_tae(self.estimator, f))
incumbent = smac.optimize()
self.trials = smac.get_runhistory()
trainable = lale_trainable_op_from_config(self.estimator, incumbent)
#get the trainable corresponding to the best params and train it on the entire training dataset.
trained = trainable.fit(X_train, y_train)
self._best_estimator = trained
except BudgetExhaustedException:
logger.warning('Maximum alloted optimization time exceeded. Optimization exited prematurely')
except BaseException as e:
logger.warning('Error during optimization: {}'.format(e))
self._best_estimator = None
return self