当前位置: 首页>>代码示例>>Python>>正文


Python pairwise.linear_kernel方法代码示例

本文整理汇总了Python中sklearn.metrics.pairwise.linear_kernel方法的典型用法代码示例。如果您正苦于以下问题:Python pairwise.linear_kernel方法的具体用法?Python pairwise.linear_kernel怎么用?Python pairwise.linear_kernel使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.metrics.pairwise的用法示例。


在下文中一共展示了pairwise.linear_kernel方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __kernel_definition__

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def __kernel_definition__(self):
        """Select the kernel function
        
        Returns
        -------
        kernel : a callable relative to selected kernel
        """
        if hasattr(self.kernel, '__call__'):
            return self.kernel
        if self.kernel == 'rbf' or self.kernel == None:
            return lambda X,Y : rbf_kernel(X,Y,self.rbf_gamma)
        if self.kernel == 'poly':
            return lambda X,Y : polynomial_kernel(X, Y, degree=self.degree, gamma=self.rbf_gamma, coef0=self.coef0)
        if self.kernel == 'linear':
            return lambda X,Y : linear_kernel(X,Y)
        if self.kernel == 'precomputed':
            return lambda X,Y : X 
开发者ID:IvanoLauriola,项目名称:MKLpy,代码行数:19,代码来源:komd.py

示例2: get_topk_docs_scores

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def get_topk_docs_scores(self, query):
        """
        :param query: question as string
        :return: the top k articles with each of their paragraphs seperated by '###' as python list of strings
        """
        qeury = self.stem_string(query)
        query_tfidf = self.vectorizer.transform([query])
        similarities_raw = linear_kernel(self.tfidf_matrix, query_tfidf)
        similarities = []
        for s in similarities_raw:
            similarities.append(s[0])
        indices_sorted = np.argsort(similarities)[::-1]  # reverse order
        top_docs = []
        docs_scores = []
        i = 0
        while i < min(self.k, len(self.docs)):
            doc = self.docs[indices_sorted[i]]
            top_docs.append(doc)
            docs_scores.append(similarities[indices_sorted[i]])
            i += 1
        norm_cst = np.sum(np.asarray(docs_scores))
        docs_scores = np.asarray(docs_scores)
        docs_scores = docs_scores / norm_cst
        return top_docs, docs_scores 
开发者ID:husseinmozannar,项目名称:SOQAL,代码行数:26,代码来源:TfidfRetriever.py

示例3: get_topk_docs

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def get_topk_docs(self, query):
        """
        :param query: question as string
        :return: the top k articles with each of their paragraphs seperated by '###' as python list of strings
        """
        qeury = self.stem_string(query)
        query_tfidf = self.vectorizer.transform([query])
        similarities_raw = linear_kernel(self.tfidf_matrix, query_tfidf)
        similarities = []
        for s in similarities_raw:
            similarities.append(s[0])
        indices_sorted = np.argsort(similarities)[::-1]  # reverse order
        top_docs = []
        scores = []
        i = 0
        while i < min(self.k, len(self.docs)):
            doc = self.docs[indices_sorted[i]]
            top_docs.append(doc)
            i += 1
        norm_cst = np.sum(np.asarray(scores))
        return top_docs 
开发者ID:husseinmozannar,项目名称:SOQAL,代码行数:23,代码来源:TfidfRetriever.py

示例4: test_linear_kernel

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def test_linear_kernel(N=1):
    np.random.seed(12345)
    i = 0
    while i < N:
        N = np.random.randint(1, 100)
        M = np.random.randint(1, 100)
        C = np.random.randint(1, 1000)

        X = np.random.rand(N, C)
        Y = np.random.rand(M, C)

        mine = LinearKernel()(X, Y)
        gold = sk_linear(X, Y)

        np.testing.assert_almost_equal(mine, gold)
        print("PASSED")
        i += 1 
开发者ID:ddbourgin,项目名称:numpy-ml,代码行数:19,代码来源:test_utils.py

示例5: query

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def query(self, query, k=None, indices=None, return_scores=False, sort=True):
        centroids = self.centroids
        if centroids is None:
            raise NotFittedError
        if indices is not None:
            centroids = centroids[indices]
        q = self.vect.transform([query])
        q = normalize(q, copy=False)
        D = linear_kernel(q, centroids)  # l2 normalized, so linear kernel
        # ind = np.argsort(D[0, :])[::-1]  # similarity metric, so reverse
        # if k is not None:  # we could use our argtopk in the first place
        #     ind = ind[:k]
        # print(ind)
        ind = argtopk(D[0], k) if sort else np.arange(D.shape[1])
        if return_scores:
            return ind, D[0, ind]
        else:
            return ind 
开发者ID:lgalke,项目名称:vec4ir,代码行数:20,代码来源:word2vec.py

示例6: get_similarity_scores

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def get_similarity_scores(verb_token, vectorizer, tf_idf_matrix):
    """ Compute the cosine similarity score of a given verb token against the input corpus TF/IDF matrix.

        :param str verb_token: Surface form of a verb, e.g., *born*
        :param sklearn.feature_extraction.text.TfidfVectorizer vectorizer: Vectorizer
         used to transform verbs into vectors
        :return: cosine similarity score
        :rtype: ndarray
    """
    verb_token_vector = vectorizer.transform([verb_token])
    # Here the linear kernel is the same as the cosine similarity, but faster
    # cf. http://scikit-learn.org/stable/modules/metrics.html#cosine-similarity
    scores = linear_kernel(verb_token_vector, tf_idf_matrix)
    logger.debug("Corpus-wide TF/IDF scores for '%s': %s" % (verb_token, scores))
    logger.debug("Average TF/IDF score for '%s': %f" % (verb_token, average(scores)))
    return scores 
开发者ID:Wikidata,项目名称:StrepHit,代码行数:18,代码来源:rank_verbs.py

示例7: getSimilarities

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def getSimilarities(id, recommendations, plotsTFIDF, verbose):
    start = time.time()
    # Generate cosine similarities
    cosineSimilarities = linear_kernel(plotsTFIDF, plotsTFIDF)
    # Get similarity scores for the input movie
    scores = list(enumerate(cosineSimilarities[id]))
    # Sort into descending order the scores
    sortedScores = sorted(scores, key=lambda x: x[1], reverse=True)
    # Get the number of the recommendations asked
    movieRecommendations = sortedScores[1:recommendations + 1]
    # Get the indices of the recommendation movies
    movieIndices = [i[0] for i in movieRecommendations]
    if (verbose):
        printGreen(
            '✔ Found Similarities\t{0:.1f}s'.format(time.time() - start))
    return movieIndices 
开发者ID:klaussinani,项目名称:moviebox,代码行数:18,代码来源:tfidf.py

示例8: removeSimilarSentences

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def removeSimilarSentences(generatedSentences, originalSentences,  stopwords,threshold=0.80,):
    docs=[]
    for sent, sim in generatedSentences:
        docs.append(sent)
    docs.extend(originalSentences)
    
    bow_matrix = StemmedTfidfVectorizer(stop_words=stopwords).fit_transform(docs)
    normalized = TfidfTransformer().fit_transform(bow_matrix)
    #simMatrix = (normalized[0:] * normalized[0:].T).A
    simindices=[]
    #print 'Num original, ', len(originalSentences)
    for i in xrange(len(generatedSentences)):
        simGeneratedScores = linear_kernel(normalized[i], normalized[len(generatedSentences):]).flatten()
        if(max(simGeneratedScores) >= threshold):
            simindices.append(i)
    
    #print simindices
    finalGen=[sentence for k,sentence in enumerate(generatedSentences) if k not in simindices]
    #print len(generatedSentences), len(finalGen)
    return finalGen 
开发者ID:StevenLOL,项目名称:AbTextSumm,代码行数:22,代码来源:WGGraph.py

示例9: monotone_conjunctive_kernel

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def monotone_conjunctive_kernel(X,Z=None,c=2):
    L = linear_kernel(X,Z)
    return binom(L,c) 
开发者ID:IvanoLauriola,项目名称:MKLpy,代码行数:5,代码来源:boolean.py

示例10: monotone_disjunctive_kernel

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def monotone_disjunctive_kernel(X,Z=None,d=2):
    L = linear_kernel(X,Z)
    n = X.shape[1]

    XX = np.dot(X.sum(axis=1).reshape(X.shape[0],1), np.ones((1,Z.shape[0])))
    TT = np.dot(Z.sum(axis=1).reshape(Z.shape[0],1), np.ones((1,X.shape[0])))
    N_x = n - XX
    N_t = n - TT
    N_xz = N_x - TT.T + L

    N_d = binom(n, d)
    N_x = binom(N_x,d)
    N_t = binom(N_t,d)
    N_xz = binom(N_xz,d)
    return (N_d - N_x - N_t.T + N_xz) 
开发者ID:IvanoLauriola,项目名称:MKLpy,代码行数:17,代码来源:boolean.py

示例11: tanimoto_kernel

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def tanimoto_kernel(X,Z=None):#?
    L = linear_kernel(X,Z)
    xx = np.linalg.norm(X,axis=1)
    tt = np.linalg.norm(T,axis=1)
    pass 
开发者ID:IvanoLauriola,项目名称:MKLpy,代码行数:7,代码来源:boolean.py

示例12: test_HPK_train

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def test_HPK_train(self):
		Ktr = self.Xtr @ self.Xtr.T
		self.assertTrue(matNear(Ktr,pairwise_sk.linear_kernel(self.Xtr)))
		self.assertTrue(matNear(
			pairwise_mk.homogeneous_polynomial_kernel(self.Xtr, degree=4),
			pairwise_sk.polynomial_kernel(self.Xtr, degree=4, gamma=1, coef0=0)))
		self.assertTrue(matNear(
			pairwise_mk.homogeneous_polynomial_kernel(self.Xtr, degree=5),
			pairwise_sk.polynomial_kernel(self.Xtr, degree=5, gamma=1, coef0=0)))
		self.assertTrue(matNear(Ktr**3, pairwise_sk.polynomial_kernel(self.Xtr, degree=3, gamma=1, coef0=0)))
		self.assertTrue(matNear(
			pairwise_mk.homogeneous_polynomial_kernel(self.Xtr, self.Xtr, degree=3),
			pairwise_sk.polynomial_kernel(self.Xtr, self.Xtr, degree=3, gamma=1, coef0=0))) 
开发者ID:IvanoLauriola,项目名称:MKLpy,代码行数:15,代码来源:unit_tests.py

示例13: test_numpy

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def test_numpy(self):
		Xtr = self.Xtr.numpy()
		self.assertTrue(matNear(
			pairwise_mk.polynomial_kernel(Xtr, degree=4, gamma=0.1, coef0=2),
			pairwise_sk.polynomial_kernel(Xtr, degree=4, gamma=0.1, coef0=2)))
		self.assertTrue(matNear(
			pairwise_mk.linear_kernel(Xtr),
			pairwise_sk.linear_kernel(Xtr))) 
开发者ID:IvanoLauriola,项目名称:MKLpy,代码行数:10,代码来源:unit_tests.py

示例14: test_kernel_normalization

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def test_kernel_normalization(self):
		K = self.X @ self.X.T
		Kn_torch = preprocessing.kernel_normalization(K)
		Kn_numpy = preprocessing.kernel_normalization(K.numpy())
		self.assertAlmostEqual(Kn_torch.max().item(), 1., places=6)
		self.assertAlmostEqual(Kn_torch.diag().min().item(), 1., places=6)
		self.assertEqual(Kn_torch.shape, (5,5))
		self.assertTrue(matNear(Kn_torch, Kn_numpy))
		self.assertEqual(type(Kn_torch), torch.Tensor)
		self.assertEqual(type(Kn_numpy), torch.Tensor)
		linear = pairwise_mk.linear_kernel(preprocessing.normalization(self.X))
		self.assertTrue(matNear(Kn_torch, linear, eps=1e-7)) 
开发者ID:IvanoLauriola,项目名称:MKLpy,代码行数:14,代码来源:unit_tests.py

示例15: test_lambda

# 需要导入模块: from sklearn.metrics import pairwise [as 别名]
# 或者: from sklearn.metrics.pairwise import linear_kernel [as 别名]
def test_lambda(self):
		funcs = [pairwise_mk.linear_kernel, lambda X,Z : (X @ Z.T)**2]
		KLtr = [pairwise_mk.linear_kernel(self.Xtr), pairwise_mk.homogeneous_polynomial_kernel(self.Xtr)]
		KLte = [pairwise_mk.linear_kernel(self.Xte, self.Xtr), pairwise_mk.homogeneous_polynomial_kernel(self.Xte, self.Xtr)]
		KLtr_g = Lambda_generator(self.Xtr, kernels=funcs)
		KLte_g = Lambda_generator(self.Xte, self.Xtr, kernels=funcs)
		self.assertTrue(matNear(average(KLtr), average(KLtr_g)))
		self.assertTrue(matNear(average(KLte), average(KLte_g)))
		self.assertTrue(matNear(KLtr[1], KLtr_g[1]))
		self.assertTrue(matNear(KLte[0], KLte_g[0])) 
开发者ID:IvanoLauriola,项目名称:MKLpy,代码行数:12,代码来源:unit_tests.py


注:本文中的sklearn.metrics.pairwise.linear_kernel方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。