当前位置: 首页>>代码示例>>Python>>正文


Python metrics.make_scorer方法代码示例

本文整理汇总了Python中sklearn.metrics.make_scorer方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.make_scorer方法的具体用法?Python metrics.make_scorer怎么用?Python metrics.make_scorer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块sklearn.metrics的用法示例。

在下文中一共展示了metrics.make_scorer方法的30个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: test_cross_val_score_with_score_func_regression

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_cross_val_score_with_score_func_regression():
    X, y = make_regression(n_samples=30, n_features=20, n_informative=5,
                           random_state=0)
    reg = Ridge()

    # Default score of the Ridge regression estimator
    scores = cross_val_score(reg, X, y, cv=5)
    assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)

    # R2 score (aka. determination coefficient) - should be the
    # same as the default estimator score
    r2_scores = cross_val_score(reg, X, y, scoring="r2", cv=5)
    assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)

    # Mean squared error; this is a loss function, so "scores" are negative
    neg_mse_scores = cross_val_score(reg, X, y, cv=5,
                                     scoring="neg_mean_squared_error")
    expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
    assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2)

    # Explained variance
    scoring = make_scorer(explained_variance_score)
    ev_scores = cross_val_score(reg, X, y, cv=5, scoring=scoring)
    assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:26,代码来源:test_validation.py


示例2: test_grid_search_cv_results_multimetric

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_grid_search_cv_results_multimetric():
    X, y = make_classification(n_samples=50, n_features=4, random_state=42)

    n_splits = 3
    params = [dict(kernel=['rbf', ], C=[1, 10], gamma=[0.1, 1]),
              dict(kernel=['poly', ], degree=[1, 2])]

    for iid in (False, True):
        grid_searches = []
        for scoring in ({'accuracy': make_scorer(accuracy_score),
                         'recall': make_scorer(recall_score)},
                        'accuracy', 'recall'):
            grid_search = GridSearchCV(SVC(gamma='scale'), cv=n_splits,
                                       iid=iid, param_grid=params,
                                       scoring=scoring, refit=False)
            grid_search.fit(X, y)
            assert_equal(grid_search.iid, iid)
            grid_searches.append(grid_search)

        compare_cv_results_multimetric_with_single(*grid_searches, iid=iid) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:22,代码来源:test_search.py


示例3: apply_gridsearch

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def apply_gridsearch(self,model):
        """
        apply grid search on ml algorithm to specified parameters
        returns updated best score and parameters
        """
        # check if custom evalution function is specified
        if callable(self.params_cv['scoring']):
            scoring = make_scorer(self.params_cv['scoring'],greater_is_better=self._greater_is_better)
        else:
            scoring = self.params_cv['scoring']
        
        gsearch = GridSearchCV(estimator=model,param_grid=self.get_params_tune(),scoring=scoring,
                               iid=self.params_cv['iid'],cv=self.params_cv['cv_folds'],n_jobs=self.params_cv['n_jobs'])
        gsearch.fit(self.X,self.y)
        
        # update best model if best_score is improved
        if (gsearch.best_score_ * self._score_mult) > (self.best_score * self._score_mult):
            self.best_model = clone(gsearch.best_estimator_)
            self.best_score = gsearch.best_score_
        
        # update tuned parameters with optimal values
        for key,value in gsearch.best_params_.items():
            self._params[key] = value
        self._temp_score = gsearch.best_score_
        return self 
开发者ID:arnaudvl,项目名称:ml-parameter-optimization,代码行数:27,代码来源:ml_tune.py


示例4: mae_cv

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def mae_cv(self, cv):
        """
        This method performs cross-validation over median absolute error.
        
        Parameters
        ----------
        * cv : integer
          The number of cross validation folds to perform

        Returns
        -------
        Returns a scores of the k-fold median absolute error.
        """

        mae = metrics.make_scorer(metrics.median_absolute_error)
        result = cross_validate(self.reg, self.X,
                                self.y, cv=cv,
                                scoring=(mae))
        return self.get_test_score(result) 
开发者ID:EricSchles,项目名称:drifter_ml,代码行数:21,代码来源:regression_tests.py


示例5: mse_cv

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def mse_cv(self, cv):
        """
        This method performs cross-validation over mean squared error.
        
        Parameters
        ----------
        * cv : integer
          The number of cross validation folds to perform

        Returns
        -------
        Returns a scores of the k-fold mean squared error.
        """
        mse = metrics.make_scorer(metrics.mean_squared_error)
        result = cross_validate(self.reg, self.X,
                                self.y, cv=cv,
                                scoring=(mse))
        return self.get_test_score(result) 
开发者ID:EricSchles,项目名称:drifter_ml,代码行数:20,代码来源:regression_tests.py


示例6: tse_cv

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def tse_cv(self, cv):
        """
        This method performs cross-validation over trimean squared error.
        
        Parameters
        ----------
        * cv : integer
          The number of cross validation folds to perform

        Returns
        -------
        Returns a scores of the k-fold trimean squared error.
        """
        tse = metrics.make_scorer(self.trimean_squared_error)
        result = cross_validate(self.reg, self.X,
                                self.y, cv=cv,
                                scoring=(tse))
        return self.get_test_score(result) 
开发者ID:EricSchles,项目名称:drifter_ml,代码行数:20,代码来源:regression_tests.py


示例7: tae_cv

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def tae_cv(self, cv):
        """
        This method performs cross-validation over trimean absolute error.
        
        Parameters
        ----------
        * cv : integer
          The number of cross validation folds to perform

        Returns
        -------
        Returns a scores of the k-fold trimean absolute error.
        """
        tse = metrics.make_scorer(self.trimean_absolute_error)
        result = cross_validate(self.reg, self.X,
                                self.y, cv=cv,
                                scoring=(tse))
        return self.get_test_score(result) 
开发者ID:EricSchles,项目名称:drifter_ml,代码行数:20,代码来源:regression_tests.py


示例8: test_with_make_scorer_accuracy_score

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_with_make_scorer_accuracy_score(
            self, net_cls, module_cls, scoring_cls, train_split, data,
    ):
        net = net_cls(
            module_cls,
            callbacks=[scoring_cls(make_scorer(accuracy_score))],
            batch_size=1,
            max_epochs=2,
            train_split=train_split,
        )
        net.fit(*data)

        score_epochs = net.history[:, 'accuracy_score']
        assert np.allclose(score_epochs, [0, 0])

        score_batches = net.history[:, 'batches', :, 'accuracy_score']
        assert np.allclose(score_batches, [[0, 0], [0, 0]]) 
开发者ID:skorch-dev,项目名称:skorch,代码行数:19,代码来源:test_scoring.py


示例9: convert_sklearn_metric_function

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def convert_sklearn_metric_function(scoring):
    """If ``scoring`` is a sklearn metric function, convert it to a
    sklearn scorer and return it. Otherwise, return ``scoring`` unchanged."""
    if callable(scoring):
        module = getattr(scoring, '__module__', None)

        # those are scoring objects returned by make_scorer starting
        # from sklearn 0.22
        scorer_names = ('_PredictScorer', '_ProbaScorer', '_ThresholdScorer')
        if (
                hasattr(module, 'startswith') and
                module.startswith('sklearn.metrics.') and
                not module.startswith('sklearn.metrics.scorer') and
                not module.startswith('sklearn.metrics.tests.') and
                not scoring.__class__.__name__ in scorer_names
        ):
            return make_scorer(scoring)
    return scoring 
开发者ID:skorch-dev,项目名称:skorch,代码行数:20,代码来源:scoring.py


示例10: test_with_gridsearchcv3_auto

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_with_gridsearchcv3_auto(self):
        from sklearn.model_selection import GridSearchCV
        from sklearn.datasets import load_iris
        from sklearn.metrics import accuracy_score, make_scorer
        lr = LogisticRegression()
        from sklearn.pipeline import Pipeline
        scikit_pipeline = Pipeline([(Nystroem().name(), Nystroem()), (lr.name(), LogisticRegression())])
        all_parameters = get_grid_search_parameter_grids(Nystroem()>>lr, num_samples=1)
        # otherwise the test takes too long
        parameters = random.sample(all_parameters, 2)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")

            clf = GridSearchCV(scikit_pipeline, parameters, cv=2, scoring=make_scorer(accuracy_score))
            iris = load_iris()
            clf.fit(iris.data, iris.target)
            predicted = clf.predict(iris.data) 
开发者ID:IBM,项目名称:lale,代码行数:19,代码来源:test_pipeline.py


示例11: test_with_randomizedsearchcv

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_with_randomizedsearchcv(self):
        from sklearn.model_selection import RandomizedSearchCV
        from sklearn.datasets import load_iris
        from sklearn.metrics import accuracy_score, make_scorer
        from scipy.stats.distributions import uniform
        import numpy as np
        lr = LogisticRegression()
        parameters = {'solver':('liblinear', 'lbfgs'), 'penalty':['l2']}
        ranges, cat_idx = lr.get_param_ranges()
        min_C, max_C, default_C = ranges['C']
        # specify parameters and distributions to sample from
        #the loguniform distribution needs to be taken care of properly
        param_dist = {"solver": ranges['solver'],
                      "C": uniform(min_C, np.log(max_C))}
        # run randomized search
        n_iter_search = 5
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            random_search = RandomizedSearchCV(
                lr, param_distributions=param_dist, n_iter=n_iter_search, cv=5,
                scoring=make_scorer(accuracy_score))
            iris = load_iris()
            random_search.fit(iris.data, iris.target) 
开发者ID:IBM,项目名称:lale,代码行数:25,代码来源:test_core_operators.py


示例12: test_clone_operator_choice

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_clone_operator_choice(self):
        from sklearn.model_selection import cross_val_score
        from sklearn.metrics import accuracy_score, make_scorer
        from sklearn.base import clone
        from sklearn.datasets import load_iris
        iris = load_iris()
        X, y = iris.data, iris.target

        lr = LogisticRegression()
        trainable = PCA() >> lr 
        trainable_wrapper = make_sklearn_compat(trainable)
        trainable2 = clone(trainable_wrapper)
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            result = cross_val_score(trainable_wrapper, X, y,
                                     scoring=make_scorer(accuracy_score), cv=2)
            result2 = cross_val_score(trainable2, X, y,
                                      scoring=make_scorer(accuracy_score), cv=2)
        for i in range(len(result)):
            self.assertEqual(result[i], result2[i]) 
开发者ID:IBM,项目名称:lale,代码行数:22,代码来源:test_core_operators.py


示例13: test_with_gridsearchcv_auto_wrapped_pipe1

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_with_gridsearchcv_auto_wrapped_pipe1(self):
        from sklearn.datasets import load_iris
        from sklearn.metrics import accuracy_score, make_scorer
  
        lr = LogisticRegression()
        pca = PCA()
        trainable = pca >> lr

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            from lale.lib.lale import GridSearchCV
            clf = GridSearchCV(
                estimator=trainable, lale_num_samples=1, lale_num_grids=1,
                cv=2, scoring=make_scorer(accuracy_score))
            iris = load_iris()
            clf.fit(iris.data, iris.target) 
开发者ID:IBM,项目名称:lale,代码行数:18,代码来源:test_optimizers.py


示例14: backtest

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def backtest(data_set_path,n_test_split):

    X,y = prepare_data(data_set_path,as_retention=False)

    tscv = TimeSeriesSplit(n_splits=n_test_split)

    lift_scorer = make_scorer(calc_lift, needs_proba=True)
    score_models = {'lift': lift_scorer, 'AUC': 'roc_auc'}

    retain_reg = LogisticRegression(penalty='l1', solver='liblinear', fit_intercept=True)

    gsearch = GridSearchCV(estimator=retain_reg,scoring=score_models, cv=tscv, verbose=1,
                           return_train_score=False,  param_grid={'C' : [1]}, refit='AUC')

    gsearch.fit(X,y)
    result_df = pd.DataFrame(gsearch.cv_results_)

    save_path = data_set_path.replace('.csv', '_backtest.csv')
    result_df.to_csv(save_path, index=False)
    print('Saved test scores to ' + save_path) 
开发者ID:carl24k,项目名称:fight-churn,代码行数:22,代码来源:listing_9_3_backtest.py


示例15: crossvalidate_churn_model

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def crossvalidate_churn_model(self,model_code,groups=True):
        X,y = self.prepare_xy(groups)
        params = self.cv_params(model_code)
        model = self.model_instance(model_code)
        tscv = TimeSeriesSplit(n_splits=3)
        lift_scorer = make_scorer(top_decile_lift,needs_proba=True)
        score_models = {'lift_scorer' : lift_scorer, 'AUC' : 'roc_auc'}
        gsearch = GridSearchCV(estimator=model, param_grid=params, scoring=score_models, cv=tscv, n_jobs=8,verbose=5,
                               return_train_score=True,refit='AUC')


        gsearch.fit(X, y)
        result_df = pd.DataFrame(gsearch.cv_results_)
        if len(params)>1:
            result_df.sort_values('mean_test_AUC',ascending=False,inplace=True)


        save_file_name = model_code + '_CV'
        save_path = self.save_path(save_file_name, subdir=self.grouping_correlation_subdir(groups))

        result_df.to_csv(save_path)
        print('Saved result to ' + save_path)
        return result_df 
开发者ID:carl24k,项目名称:fight-churn,代码行数:25,代码来源:churn_calc.py


示例16: check_scoring

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def check_scoring(estimator, scoring=None, **kwargs):
    res = sklearn_check_scoring(estimator, scoring=scoring, **kwargs)
    if callable(scoring):
        # Heuristic to ensure user has not passed a metric
        module = getattr(scoring, "__module__", None)
        if (
            hasattr(module, "startswith")
            and module.startswith("dask_ml.metrics.")
            and not module.startswith("dask_ml.metrics.scorer")
            and not module.startswith("dask_ml.metrics.tests.")
        ):
            raise ValueError(
                "scoring value %r looks like it is a metric "
                "function rather than a scorer. A scorer should "
                "require an estimator as its first parameter. "
                "Please use `make_scorer` to convert a metric "
                "to a scorer." % scoring
            )
    if scoring in SCORERS.keys():
        func, kwargs = SCORERS[scoring]
        return make_scorer(func, **kwargs)
    return res 
开发者ID:dask,项目名称:dask-ml,代码行数:24,代码来源:scorer.py


示例17: test_sklearn_custom_scoring_and_cv

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_sklearn_custom_scoring_and_cv(tmp_dir):
    tuner = sklearn_tuner.Sklearn(
        oracle=kt.oracles.BayesianOptimization(
            objective=kt.Objective('score', 'max'),
            max_trials=10),
        hypermodel=build_model,
        scoring=metrics.make_scorer(metrics.balanced_accuracy_score),
        cv=model_selection.StratifiedKFold(5),
        directory=tmp_dir)

    x = np.random.uniform(size=(50, 10))
    y = np.random.randint(0, 2, size=(50,))
    tuner.search(x, y)

    assert len(tuner.oracle.trials) == 10

    best_trial = tuner.oracle.get_best_trials()[0]
    assert best_trial.status == 'COMPLETED'
    assert best_trial.score is not None
    assert best_trial.best_step == 0
    assert best_trial.metrics.exists('score')

    # Make sure best model can be reloaded.
    best_model = tuner.get_best_models()[0]
    best_model.score(x, y) 
开发者ID:keras-team,项目名称:keras-tuner,代码行数:27,代码来源:sklearn_test.py


示例18: test_sklearn_real_data

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_sklearn_real_data(tmp_dir):
    tuner = sklearn_tuner.Sklearn(
        oracle=kt.oracles.BayesianOptimization(
            objective=kt.Objective('score', 'max'),
            max_trials=10),
        hypermodel=build_model,
        scoring=metrics.make_scorer(metrics.accuracy_score),
        cv=model_selection.StratifiedKFold(5),
        directory=tmp_dir)

    x, y = datasets.load_iris(return_X_y=True)
    x_train, x_test, y_train, y_test = model_selection.train_test_split(
        x, y, test_size=0.2)

    tuner.search(x_train, y_train)

    best_models = tuner.get_best_models(10)
    best_model = best_models[0]
    worst_model = best_models[9]
    best_model_score = best_model.score(x_test, y_test)
    worst_model_score = worst_model.score(x_test, y_test)

    assert best_model_score > 0.8
    assert best_model_score >= worst_model_score 
开发者ID:keras-team,项目名称:keras-tuner,代码行数:26,代码来源:sklearn_test.py


示例19: grid_search_init_n_components

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def grid_search_init_n_components(estimator, x, y, n_components_range=None, cv=10, n_jobs=-1,
                                  scoring=None, show=True):
    """
    封装grid search特定的'n_components'关键字参数最优搜索,
    为AbuMLCreater中_estimators_prarms_best提供callback函数,
    具体阅读AbuMLCreater._estimators_prarms_best()

    :param estimator: 学习器对象
    :param x: 训练集x矩阵,numpy矩阵
    :param y: 训练集y序列,numpy序列
    :param n_components_range: 默认None, None则会使用:
            n_estimators_range = np.arange(2, np.maximum(10, int(x.shape[1]) - 1), 1)

    :param cv: int,GridSearchCV切割训练集测试集参数,默认10
    :param n_jobs: 并行执行的进程任务数量,默认-1, 开启与cpu相同数量的进程数
    :param scoring: 测试集的度量方法,默认为None, None的情况下分类器使用accuracy进行度量,回归器使用
                    回归器使用可释方差值explained_variance_score,使用make_scorer对函数进行score封装
    :param show: 是否进行可视化
    :return: eg: (0.82154882154882158, {'n_components': 10})
    """
    if n_components_range is None:
        n_components_range = np.arange(2, np.maximum(10, int(x.shape[1]) - 1), 1)

    return grid_search_init_kwargs(estimator, x, y, 'n_components', n_components_range,
                                   cv=cv, n_jobs=n_jobs, scoring=scoring, show=show) 
开发者ID:bbfamily,项目名称:abu,代码行数:27,代码来源:ABuMLGrid.py


示例20: estimate_predictive_performance

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def estimate_predictive_performance(x_y,
                                    estimator=None,
                                    n_splits=10,
                                    random_state=1):
    """estimate_predictive_performance."""
    x, y = x_y
    cv = ShuffleSplit(n_splits=n_splits,
                      test_size=0.3,
                      random_state=random_state)
    scoring = make_scorer(average_precision_score)
    scores = cross_val_score(estimator, x, y, cv=cv, scoring=scoring)
    return scores 
开发者ID:fabriziocosta,项目名称:EDeN,代码行数:14,代码来源:estimator_utils.py


示例21: validate_model

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def validate_model(task, cv: int) -> None:
    x, y = task.create_train_data()
    model = task.create_model()

    scores = []

    def _scoring(y_true, y_pred):
        report = classification_report(y_true, y_pred, output_dict=True)
        logger.info(report)
        scores.append(report)
        return accuracy_score(y_true, y_pred)

    cross_val_score(model, x, y, cv=cv, scoring=make_scorer(_scoring))
    task.dump(scores) 
开发者ID:m3dev,项目名称:redshells,代码行数:16,代码来源:utils.py


示例22: test_make_scorer

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_make_scorer():
    # Sanity check on the make_scorer factory function.
    f = lambda *args: 0
    assert_raises(ValueError, make_scorer, f, needs_threshold=True,
                  needs_proba=True) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:7,代码来源:test_score_objects.py


示例23: test_raises_on_score_list

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_raises_on_score_list():
    # Test that when a list of scores is returned, we raise proper errors.
    X, y = make_blobs(random_state=0)
    f1_scorer_no_average = make_scorer(f1_score, average=None)
    clf = DecisionTreeClassifier()
    assert_raises(ValueError, cross_val_score, clf, X, y,
                  scoring=f1_scorer_no_average)
    grid_search = GridSearchCV(clf, scoring=f1_scorer_no_average,
                               param_grid={'max_depth': [1, 2]})
    assert_raises(ValueError, grid_search.fit, X, y) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:12,代码来源:test_score_objects.py


示例24: test_scoring_is_not_metric

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_scoring_is_not_metric():
    assert_raises_regexp(ValueError, 'make_scorer', check_scoring,
                         LogisticRegression(), f1_score)
    assert_raises_regexp(ValueError, 'make_scorer', check_scoring,
                         LogisticRegression(), roc_auc_score)
    assert_raises_regexp(ValueError, 'make_scorer', check_scoring,
                         Ridge(), r2_score)
    assert_raises_regexp(ValueError, 'make_scorer', check_scoring,
                         KMeans(), cluster_module.adjusted_rand_score) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:11,代码来源:test_score_objects.py


示例25: test_cross_val_score_score_func

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_cross_val_score_score_func():
    clf = MockClassifier()
    _score_func_args = []

    def score_func(y_test, y_predict):
        _score_func_args.append((y_test, y_predict))
        return 1.0

    with warnings.catch_warnings(record=True):
        scoring = make_scorer(score_func)
        score = cross_val_score(clf, X, y, scoring=scoring, cv=3)
    assert_array_equal(score, [1.0, 1.0, 1.0])
    # Test that score function is called only 3 times (for cv=3)
    assert len(_score_func_args) == 3 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:16,代码来源:test_validation.py


示例26: test_cross_val_score_multilabel

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_cross_val_score_multilabel():
    X = np.array([[-3, 4], [2, 4], [3, 3], [0, 2], [-3, 1],
                  [-2, 1], [0, 0], [-2, -1], [-1, -2], [1, -2]])
    y = np.array([[1, 1], [0, 1], [0, 1], [0, 1], [1, 1],
                  [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]])
    clf = KNeighborsClassifier(n_neighbors=1)
    scoring_micro = make_scorer(precision_score, average='micro')
    scoring_macro = make_scorer(precision_score, average='macro')
    scoring_samples = make_scorer(precision_score, average='samples')
    score_micro = cross_val_score(clf, X, y, scoring=scoring_micro, cv=5)
    score_macro = cross_val_score(clf, X, y, scoring=scoring_macro, cv=5)
    score_samples = cross_val_score(clf, X, y, scoring=scoring_samples, cv=5)
    assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3])
    assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
    assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4]) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:17,代码来源:test_validation.py


示例27: test_grid_search_sparse_scoring

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_grid_search_sparse_scoring():
    X_, y_ = make_classification(n_samples=200, n_features=100, random_state=0)

    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
    cv.fit(X_[:180], y_[:180])
    y_pred = cv.predict(X_[180:])
    C = cv.best_estimator_.C

    X_ = sp.csr_matrix(X_)
    clf = LinearSVC()
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring="f1")
    cv.fit(X_[:180], y_[:180])
    y_pred2 = cv.predict(X_[180:])
    C2 = cv.best_estimator_.C

    assert_array_equal(y_pred, y_pred2)
    assert_equal(C, C2)
    # Smoke test the score
    # np.testing.assert_allclose(f1_score(cv.predict(X_[:180]), y[:180]),
    #                            cv.score(X_[:180], y[:180]))

    # test loss where greater is worse
    def f1_loss(y_true_, y_pred_):
        return -f1_score(y_true_, y_pred_)
    F1Loss = make_scorer(f1_loss, greater_is_better=False)
    cv = GridSearchCV(clf, {'C': [0.1, 1.0]}, scoring=F1Loss)
    cv.fit(X_[:180], y_[:180])
    y_pred3 = cv.predict(X_[180:])
    C3 = cv.best_estimator_.C

    assert_equal(C, C3)
    assert_array_equal(y_pred, y_pred3) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:35,代码来源:test_search.py


示例28: test_fit_grid_point

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def test_fit_grid_point():
    X, y = make_classification(random_state=0)
    cv = StratifiedKFold(random_state=0)
    svc = LinearSVC(random_state=0)
    scorer = make_scorer(accuracy_score)

    for params in ({'C': 0.1}, {'C': 0.01}, {'C': 0.001}):
        for train, test in cv.split(X, y):
            this_scores, this_params, n_test_samples = fit_grid_point(
                X, y, clone(svc), params, train, test,
                scorer, verbose=False)

            est = clone(svc).set_params(**params)
            est.fit(X[train], y[train])
            expected_score = scorer(est, X[test], y[test])

            # Test the return values of fit_grid_point
            assert_almost_equal(this_scores, expected_score)
            assert_equal(params, this_params)
            assert_equal(n_test_samples, test.size)

    # Should raise an error upon multimetric scorer
    assert_raise_message(ValueError, "For evaluating multiple scores, use "
                         "sklearn.model_selection.cross_validate instead.",
                         fit_grid_point, X, y, svc, params, train, test,
                         {'score': scorer}, verbose=True) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:28,代码来源:test_search.py


示例29: main

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def main():

    import sys
    import numpy as np
    from sklearn import cross_validation
    from sklearn import svm
    import cPickle

    data_dir = sys.argv[1]

    fet_list = load_list(osp.join(data_dir, 'c3d.list'))
    pos_list = load_list(osp.join(data_dir, 'pos.urls'))

    features = np.load(osp.join(data_dir, 'c3d.npy'))
    fet_set = set(fet_list)

    pos_idx = [fet_list.index(i) for i in pos_list if i in fet_set]

    y = np.zeros(features.shape[0])
    y[pos_idx] = 1

    print 'n_pos', np.sum(y), 'n_neg', np.sum(1 - y)

    params = {'n_estimators':[2, 4, 5, 6, 8, 10, 30]}
    #params = {'n_estimators':[50, 70, 100, 120, 150, 200]}
    clf = grid_search.GridSearchCV(RandomForestClassifier(n_estimators = 2, n_jobs = 4), params, scoring = metrics.make_scorer(lambda yt, yp: metrics.f1_score(yt, yp, pos_label = 0)), cv = 5)
    clf.fit(features, y)
    print clf.best_score_
    print clf.best_estimator_
    cPickle.dump(clf.best_estimator_, open(osp.join(data_dir, 'c3d-models-rfc.pkl'), 'w')) 
开发者ID:raingo,项目名称:TGIF-Release,代码行数:32,代码来源:train.py


示例30: _score

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import make_scorer [as 别名]
def _score(self, y_true, y_pred, method, plot_type, score_name):
        """ scoring function to be passed to make_scorer.

        """
        treatment_true, outcome_true, p = self.untransform(y_true)
        scores = get_scores(treatment_true, outcome_true, y_pred, p, scoring_range=(0,self.scoring_cutoff[method]), plot_type=plot_type)
        return scores[score_name] 
开发者ID:wayfair,项目名称:pylift,代码行数:9,代码来源:base.py



注:本文中的sklearn.metrics.make_scorer方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。