本文整理汇总了Python中sklearn.metrics.f1_score方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.f1_score方法的具体用法?Python metrics.f1_score怎么用?Python metrics.f1_score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.metrics
的用法示例。
在下文中一共展示了metrics.f1_score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: classification_scores
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def classification_scores(gts, preds, labels):
accuracy = metrics.accuracy_score(gts, preds)
class_accuracies = []
for lab in labels: # TODO Fix
class_accuracies.append(metrics.accuracy_score(gts[gts == lab], preds[gts == lab]))
class_accuracies = np.array(class_accuracies)
f1_micro = metrics.f1_score(gts, preds, average='micro')
precision_micro = metrics.precision_score(gts, preds, average='micro')
recall_micro = metrics.recall_score(gts, preds, average='micro')
f1_macro = metrics.f1_score(gts, preds, average='macro')
precision_macro = metrics.precision_score(gts, preds, average='macro')
recall_macro = metrics.recall_score(gts, preds, average='macro')
# class wise score
f1s = metrics.f1_score(gts, preds, average=None)
precisions = metrics.precision_score(gts, preds, average=None)
recalls = metrics.recall_score(gts, preds, average=None)
confusion = metrics.confusion_matrix(gts,preds, labels=labels)
#TODO confusion matrix, recall, precision
return accuracy, f1_micro, precision_micro, recall_micro, f1_macro, precision_macro, recall_macro, confusion, class_accuracies, f1s, precisions, recalls
示例2: eval_class
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def eval_class(ids_to_eval, model, z_obs):
"""
Evaluate the model's classification performance.
Parameters
----------
ids_to_eval: np.array
The indices of the nodes whose predictions will be evaluated.
model: GCN
The model to evaluate.
z_obs: np.array
The labels of the nodes in ids_to_eval
Returns
-------
[f1_micro, f1_macro] scores
"""
test_pred = model.predictions.eval(session=model.session, feed_dict={model.node_ids: ids_to_eval}).argmax(1)
test_real = z_obs[ids_to_eval]
return f1_score(test_real, test_pred, average='micro'), f1_score(test_real, test_pred, average='macro')
示例3: multi_class_classification
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def multi_class_classification(data_X,data_Y):
'''
calculate multi-class classification and return related evaluation metrics
'''
svc = svm.SVC(C=1, kernel='linear')
# X_train, X_test, y_train, y_test = train_test_split( data_X, data_Y, test_size=0.4, random_state=0)
clf = svc.fit(data_X, data_Y) #svm
# array = svc.coef_
# print array
predicted = cross_val_predict(clf, data_X, data_Y, cv=2)
print "accuracy",metrics.accuracy_score(data_Y, predicted)
print "f1 score macro",metrics.f1_score(data_Y, predicted, average='macro')
print "f1 score micro",metrics.f1_score(data_Y, predicted, average='micro')
print "precision score",metrics.precision_score(data_Y, predicted, average='macro')
print "recall score",metrics.recall_score(data_Y, predicted, average='macro')
print "hamming_loss",metrics.hamming_loss(data_Y, predicted)
print "classification_report", metrics.classification_report(data_Y, predicted)
print "jaccard_similarity_score", metrics.jaccard_similarity_score(data_Y, predicted)
# print "log_loss", metrics.log_loss(data_Y, predicted)
print "zero_one_loss", metrics.zero_one_loss(data_Y, predicted)
# print "AUC&ROC",metrics.roc_auc_score(data_Y, predicted)
# print "matthews_corrcoef", metrics.matthews_corrcoef(data_Y, predicted)
示例4: evaluation_analysis
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def evaluation_analysis(true_label,predicted):
'''
return all metrics results
'''
print "accuracy",metrics.accuracy_score(true_label, predicted)
print "f1 score macro",metrics.f1_score(true_label, predicted, average='macro')
print "f1 score micro",metrics.f1_score(true_label, predicted, average='micro')
print "precision score",metrics.precision_score(true_label, predicted, average='macro')
print "recall score",metrics.recall_score(true_label, predicted, average='macro')
print "hamming_loss",metrics.hamming_loss(true_label, predicted)
print "classification_report", metrics.classification_report(true_label, predicted)
print "jaccard_similarity_score", metrics.jaccard_similarity_score(true_label, predicted)
print "log_loss", metrics.log_loss(true_label, predicted)
print "zero_one_loss", metrics.zero_one_loss(true_label, predicted)
print "AUC&ROC",metrics.roc_auc_score(true_label, predicted)
print "matthews_corrcoef", metrics.matthews_corrcoef(true_label, predicted)
示例5: test
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def test(self, z, pos_edge_index, neg_edge_index):
"""Evaluates node embeddings :obj:`z` on positive and negative test
edges by computing AUC and F1 scores.
Args:
z (Tensor): The node embeddings.
pos_edge_index (LongTensor): The positive edge indices.
neg_edge_index (LongTensor): The negative edge indices.
"""
with torch.no_grad():
pos_p = self.discriminate(z, pos_edge_index)[:, :2].max(dim=1)[1]
neg_p = self.discriminate(z, neg_edge_index)[:, :2].max(dim=1)[1]
pred = (1 - torch.cat([pos_p, neg_p])).cpu()
y = torch.cat(
[pred.new_ones((pos_p.size(0))),
pred.new_zeros(neg_p.size(0))])
pred, y = pred.numpy(), y.numpy()
auc = roc_auc_score(y, pred)
f1 = f1_score(y, pred, average='binary') if pred.sum() > 0 else 0
return auc, f1
示例6: test_classification_2classes_small
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def test_classification_2classes_small():
X, y = make_classification(n_samples=1000,
n_features=10,
n_classes=2,
n_clusters_per_class=1,
random_state=0)
X = pd.DataFrame(X)
y = pd.Series(y)
cls = MALSS('classification').fit(X, y,
'test_classification_2classes_small')
cls.generate_module_sample()
from sklearn.metrics import f1_score
pred = cls.predict(X)
print(f1_score(y, pred, average=None))
assert len(cls.algorithms) == 5
assert cls.algorithms[0].best_score is not None
示例7: test_classification_2classes_small_jp
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def test_classification_2classes_small_jp():
X, y = make_classification(n_samples=1000,
n_features=10,
n_classes=2,
n_clusters_per_class=1,
random_state=0)
X = pd.DataFrame(X)
y = pd.Series(y)
cls = MALSS('classification',
lang='jp').fit(X, y, 'test_classification_2classes_small_jp')
cls.generate_module_sample()
from sklearn.metrics import f1_score
pred = cls.predict(X)
print(f1_score(y, pred, average=None))
assert len(cls.algorithms) == 5
assert cls.algorithms[0].best_score is not None
示例8: test_classification_multiclass_small
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def test_classification_multiclass_small():
X, y = make_classification(n_samples=1000,
n_features=10,
n_classes=3,
n_clusters_per_class=1,
random_state=0)
X = pd.DataFrame(X)
y = pd.Series(y)
cls = MALSS('classification').fit(X, y,
'test_classification_multiclass_small')
cls.generate_module_sample()
from sklearn.metrics import f1_score
pred = cls.predict(X)
print(f1_score(y, pred, average=None))
assert len(cls.algorithms) == 5
assert cls.algorithms[0].best_score is not None
示例9: test_classification_2classes_medium
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def test_classification_2classes_medium():
X, y = make_classification(n_samples=100000,
n_features=10,
n_classes=2,
n_clusters_per_class=1,
random_state=0)
X = pd.DataFrame(X)
y = pd.Series(y)
cls = MALSS('classification').fit(X, y,
'test_classification_2classes_medium')
from sklearn.metrics import f1_score
pred = cls.predict(X)
print(f1_score(y, pred, average=None))
assert len(cls.algorithms) == 4
assert cls.algorithms[0].best_score is not None
示例10: test_classification_2classes_big
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def test_classification_2classes_big():
X, y = make_classification(n_samples=200000,
n_features=20,
n_classes=2,
n_clusters_per_class=1,
random_state=0)
X = pd.DataFrame(X)
y = pd.Series(y)
cls = MALSS('classification').fit(X, y,
'test_classification_2classes_big')
cls.generate_module_sample()
from sklearn.metrics import f1_score
pred = cls.predict(X)
print(f1_score(y, pred, average=None))
assert len(cls.algorithms) == 1
assert cls.algorithms[0].best_score is not None
示例11: test_ndarray
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def test_ndarray():
data = pd.read_csv('http://faculty.marshall.usc.edu/gareth-james/ISL/Heart.csv',
index_col=0, na_values=[''])
y = data['AHD']
del data['AHD']
cls = MALSS('classification').fit(np.array(data), np.array(y),
'test_ndarray')
cls.generate_module_sample()
from sklearn.metrics import f1_score
pred = cls.predict(np.array(data))
print(f1_score(y, pred, average=None))
assert len(cls.algorithms) == 5
assert cls.algorithms[0].best_score is not None
示例12: f1_score
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def f1_score(y_true, y_pred):
"""
Compute the micro f(b) score with b=1.
"""
y_true = tf.cast(y_true, "float32")
y_pred = tf.cast(tf.round(y_pred), "float32") # implicit 0.5 threshold via tf.round
y_correct = y_true * y_pred
sum_true = tf.reduce_sum(y_true, axis=1)
sum_pred = tf.reduce_sum(y_pred, axis=1)
sum_correct = tf.reduce_sum(y_correct, axis=1)
precision = sum_correct / sum_pred
recall = sum_correct / sum_true
f_score = 2 * precision * recall / (precision + recall)
f_score = tf.where(tf.is_nan(f_score), tf.zeros_like(f_score), f_score)
return tf.reduce_mean(f_score)
示例13: load_model
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def load_model(stamp):
"""
"""
json_file = open(stamp+'.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json, {'AttentionWithContext': AttentionWithContext})
model.load_weights(stamp+'.h5')
print("Loaded model from disk")
model.summary()
adam = Adam(lr=0.001)
model.compile(loss='binary_crossentropy',
optimizer=adam,
metrics=[f1_score])
return model
示例14: get_all_metrics
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def get_all_metrics(model, eval_data, eval_labels, pred_labels):
fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
auc_ = auc(fpr, tpr)
print("auc_keras:" + str(auc_))
score = model.evaluate(eval_data, eval_labels, verbose=0)
print("Test accuracy: " + str(score[1]))
precision = precision_score(eval_labels, pred_labels)
print('Precision score: {0:0.2f}'.format(precision))
recall = recall_score(eval_labels, pred_labels)
print('Recall score: {0:0.2f}'.format(recall))
f1 = f1_score(eval_labels, pred_labels)
print('F1 score: {0:0.2f}'.format(f1))
average_precision = average_precision_score(eval_labels, pred_labels)
print('Average precision-recall score: {0:0.2f}'.format(average_precision))
return auc_, score[1], precision, recall, f1, average_precision, fpr, tpr
示例15: get_all_metrics_
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import f1_score [as 别名]
def get_all_metrics_(eval_labels, pred_labels):
fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
auc_ = auc(fpr, tpr)
print("auc_keras:" + str(auc_))
precision = precision_score(eval_labels, pred_labels)
print('Precision score: {0:0.2f}'.format(precision))
recall = recall_score(eval_labels, pred_labels)
print('Recall score: {0:0.2f}'.format(recall))
f1 = f1_score(eval_labels, pred_labels)
print('F1 score: {0:0.2f}'.format(f1))
average_precision = average_precision_score(eval_labels, pred_labels)
print('Average precision-recall score: {0:0.2f}'.format(average_precision))
return auc_, precision, recall, f1, average_precision, fpr, tpr