本文整理汇总了Python中sklearn.metrics.explained_variance_score方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.explained_variance_score方法的具体用法?Python metrics.explained_variance_score怎么用?Python metrics.explained_variance_score使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.metrics
的用法示例。
在下文中一共展示了metrics.explained_variance_score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_metrics_from_list
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def test_metrics_from_list():
"""
Check getting functions from a list of metric names
"""
default = ModelBuilder.metrics_from_list()
assert default == [
metrics.explained_variance_score,
metrics.r2_score,
metrics.mean_squared_error,
metrics.mean_absolute_error,
]
specifics = ModelBuilder.metrics_from_list(
["sklearn.metrics.adjusted_mutual_info_score", "sklearn.metrics.r2_score"]
)
assert specifics == [metrics.adjusted_mutual_info_score, metrics.r2_score]
示例2: test_regression_metrics_at_limits
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def test_regression_metrics_at_limits():
assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2)
assert_almost_equal(mean_squared_log_error([0.], [0.]), 0.00, 2)
assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2)
assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2)
assert_almost_equal(max_error([0.], [0.]), 0.00, 2)
assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2)
assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2)
assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be "
"used when targets contain negative values.",
mean_squared_log_error, [-1.], [-1.])
assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be "
"used when targets contain negative values.",
mean_squared_log_error, [1., 2., 3.], [1., -2., 3.])
assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be "
"used when targets contain negative values.",
mean_squared_log_error, [1., -2., 3.], [1., 2., 3.])
示例3: test_regression_custom_weights
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def test_regression_custom_weights():
y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]]
y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]]
msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6])
maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6])
rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6])
evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6])
assert_almost_equal(msew, 0.39, decimal=2)
assert_almost_equal(maew, 0.475, decimal=3)
assert_almost_equal(rw, 0.94, decimal=2)
assert_almost_equal(evsw, 0.94, decimal=2)
# Handling msle separately as it does not accept negative inputs.
y_true = np.array([[0.5, 1], [1, 2], [7, 6]])
y_pred = np.array([[0.5, 2], [1, 2.5], [8, 8]])
msle = mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7])
msle2 = mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred),
multioutput=[0.3, 0.7])
assert_almost_equal(msle, msle2, decimal=2)
示例4: test_cross_val_score_with_score_func_regression
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def test_cross_val_score_with_score_func_regression():
X, y = make_regression(n_samples=30, n_features=20, n_informative=5,
random_state=0)
reg = Ridge()
# Default score of the Ridge regression estimator
scores = cross_val_score(reg, X, y, cv=5)
assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# R2 score (aka. determination coefficient) - should be the
# same as the default estimator score
r2_scores = cross_val_score(reg, X, y, scoring="r2", cv=5)
assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# Mean squared error; this is a loss function, so "scores" are negative
neg_mse_scores = cross_val_score(reg, X, y, cv=5,
scoring="neg_mean_squared_error")
expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2)
# Explained variance
scoring = make_scorer(explained_variance_score)
ev_scores = cross_val_score(reg, X, y, cv=5, scoring=scoring)
assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
示例5: eva_regress
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def eva_regress(y_true, y_pred):
"""Evaluation
evaluate the predicted resul.
# Arguments
y_true: List/ndarray, ture data.
y_pred: List/ndarray, predicted data.
"""
mape = MAPE(y_true, y_pred)
vs = metrics.explained_variance_score(y_true, y_pred)
mae = metrics.mean_absolute_error(y_true, y_pred)
mse = metrics.mean_squared_error(y_true, y_pred)
r2 = metrics.r2_score(y_true, y_pred)
print('explained_variance_score:%f' % vs)
print('mape:%f%%' % mape)
print('mae:%f' % mae)
print('mse:%f' % mse)
print('rmse:%f' % math.sqrt(mse))
print('r2:%f' % r2)
示例6: eval_metrics_on
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def eval_metrics_on(predictions, labels):
'''
assuming this is a regression task; labels are continuous-valued floats
returns most regression-related scores for the given predictions/targets as a dictionary:
r2, mean_abs_error, mse, rmse, median_absolute_error, explained_variance_score
'''
if len(labels[0])==2: #labels is list of data/labels pairs
labels = np.concatenate([l[1] for l in labels])
predictions = predictions[:,0]
r2 = metrics.r2_score(labels, predictions)
mean_abs_error = np.abs(predictions - labels).mean()
mse = ((predictions - labels)**2).mean()
rmse = np.sqrt(mse)
median_absolute_error = metrics.median_absolute_error(labels, predictions) # robust to outliers
explained_variance_score = metrics.explained_variance_score(labels, predictions) # best score = 1, lower is worse
return {'r2':r2, 'mean_abs_error':mean_abs_error, 'mse':mse, 'rmse':rmse,
'median_absolute_error':median_absolute_error,
'explained_variance_score':explained_variance_score}
示例7: test
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def test(self):
"""
Tests the regressor using the dataset and writes:
1- coefficient r2
2- explained variance
3- mean absolute error
4- mean squared error
:return: None
"""
X = np.array([precedent['facts_vector'][self.important_facts_index] for precedent in self.dataset])
y_pred = self.model.predict(X)
y_true = np.array([precedent['outcomes_vector'][self.outcome_index]
for precedent in self.dataset])
r2 = metrics.r2_score(y_true, y_pred)
variance = metrics.explained_variance_score(y_true, y_pred)
mean_abs_error = metrics.mean_absolute_error(y_true, y_pred)
mean_squared_error = metrics.mean_squared_error(y_true, y_pred)
Log.write('R2: {0:.2f}'.format(r2))
Log.write('Explained Variance: {0:.2f}'.format(variance))
Log.write('Mean Absolute Error: {0:.2f}'.format(mean_abs_error))
Log.write('Mean Squared Error: {0:.2f}'.format(mean_squared_error))
示例8: test_explained_variance_score
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def test_explained_variance_score(self):
try:
from sklearn.metrics import explained_variance_score as skevs
except:
unittest.TestCase.skipTest(self, "sklearn is not found in the libraries")
skevs_score1 = skevs(self.local_reg1.target, self.local_reg1.p_target)
dlpyevs_score1 = explained_variance_score('target', 'p_target', castable=self.reg_table1)
self.assertAlmostEqual(skevs_score1, dlpyevs_score1)
skevs_score2 = skevs(self.local_reg1.target, self.local_reg2.p_target)
dlpyevs_score2 = explained_variance_score(self.reg_table1.target, self.reg_table2.p_target,
id_vars='id1')
self.assertAlmostEqual(skevs_score2, dlpyevs_score2)
示例9: grid_search_init_n_components
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def grid_search_init_n_components(estimator, x, y, n_components_range=None, cv=10, n_jobs=-1,
scoring=None, show=True):
"""
封装grid search特定的'n_components'关键字参数最优搜索,
为AbuMLCreater中_estimators_prarms_best提供callback函数,
具体阅读AbuMLCreater._estimators_prarms_best()
:param estimator: 学习器对象
:param x: 训练集x矩阵,numpy矩阵
:param y: 训练集y序列,numpy序列
:param n_components_range: 默认None, None则会使用:
n_estimators_range = np.arange(2, np.maximum(10, int(x.shape[1]) - 1), 1)
:param cv: int,GridSearchCV切割训练集测试集参数,默认10
:param n_jobs: 并行执行的进程任务数量,默认-1, 开启与cpu相同数量的进程数
:param scoring: 测试集的度量方法,默认为None, None的情况下分类器使用accuracy进行度量,回归器使用
回归器使用可释方差值explained_variance_score,使用make_scorer对函数进行score封装
:param show: 是否进行可视化
:return: eg: (0.82154882154882158, {'n_components': 10})
"""
if n_components_range is None:
n_components_range = np.arange(2, np.maximum(10, int(x.shape[1]) - 1), 1)
return grid_search_init_kwargs(estimator, x, y, 'n_components', n_components_range,
cv=cv, n_jobs=n_jobs, scoring=scoring, show=show)
示例10: test_multi
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def test_multi(self):
if os.path.isdir('sad/testm'):
shutil.rmtree('sad/testm')
sad_opts = '--rc --shifts "0,21"'
sad_opts += ' -o sad/testm -q "" -p 4'
cmd = 'basenji_sad_multi.py %s %s %s %s' % \
(sad_opts, self.params_file, self.model_file, self.vcf_file)
subprocess.call(cmd, shell=True)
saved_h5 = h5py.File('sad/saved/sad.h5', 'r')
this_h5 = h5py.File('sad/testm/sad.h5', 'r')
saved_keys = sorted(saved_h5.keys())
this_keys = sorted(this_h5.keys())
assert(len(saved_keys) == len(this_keys))
assert(saved_keys == this_keys)
for key in saved_h5:
if key[-4:] != '_pct':
saved_value = saved_h5[key][:]
this_value = this_h5[key][:]
if saved_value.dtype.char == 'S':
np.testing.assert_array_equal(saved_value, this_value)
else:
np.testing.assert_allclose(saved_value, this_value, atol=1e-1, rtol=5e-2)
r2 = explained_variance_score(saved_value.flatten(), this_value.flatten())
assert(r2 > 0.999)
saved_h5.close()
this_h5.close()
shutil.rmtree('sad/testm')
示例11: _calculate_optimal_reconstruction_orders
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def _calculate_optimal_reconstruction_orders(self,
timeseries,
components):
'''Calculates the optimal component ordering for reconstructing
each of the timeseries. This is done by simply ranking the components
in terms of how much variance they explain for each timeseries in the
original data.
'''
optimal_orders = optimal_component_ordering(
timeseries,
components
)
optimal_orders = optimal_orders.astype(int)
order_explained_variance = np.zeros_like(optimal_orders).astype(float)
for ts_idx in range(timeseries.shape[1]):
ts_comp = components[ts_idx, :, :]
ts_comp = ts_comp[:, optimal_orders[:, ts_idx]]
# ts_comp = np.cumsum(ts_comp, axis=1)
order_explained_variance[:, ts_idx] = np.apply_along_axis(
partial(explained_variance_score, timeseries[:, ts_idx]),
0,
ts_comp
)
return optimal_orders, order_explained_variance
示例12: test_model_builder_metrics_list
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def test_model_builder_metrics_list(metrics_: Optional[List[str]]):
model_config = {
"sklearn.multioutput.MultiOutputRegressor": {
"estimator": "sklearn.linear_model.LinearRegression"
}
}
data_config = get_random_data()
evaluation_config: Dict[str, Any] = {"cv_mode": "full_build"}
if metrics_:
evaluation_config.update({"metrics": metrics_})
machine = Machine(
name="model-name",
dataset=data_config,
model=model_config,
evaluation=evaluation_config,
project_name="test",
)
_model, machine = ModelBuilder(machine).build()
expected_metrics = metrics_ or [
"sklearn.metrics.explained_variance_score",
"sklearn.metrics.r2_score",
"sklearn.metrics.mean_squared_error",
"sklearn.metrics.mean_absolute_error",
]
assert all(
metric.split(".")[-1].replace("_", "-")
in machine.metadata.build_metadata.model.cross_validation.scores
for metric in expected_metrics
)
示例13: score
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def score(
self,
X: Union[np.ndarray, pd.DataFrame],
y: Union[np.ndarray, pd.DataFrame],
sample_weight: Optional[np.ndarray] = None,
) -> float:
"""
Returns the explained variance score between auto encoder's input vs output
Parameters
----------
X: Union[np.ndarray, pd.DataFrame]
Input data to the model
y: Union[np.ndarray, pd.DataFrame]
Target
sample_weight: Optional[np.ndarray]
sample weights
Returns
-------
score: float
Returns the explained variance score
"""
if not hasattr(self, "model"):
raise NotFittedError(
f"This {self.__class__.__name__} has not been fitted yet."
)
out = self.model.predict(X)
return explained_variance_score(y, out)
示例14: test_regression_metrics
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def test_regression_metrics(n_samples=50):
y_true = np.arange(n_samples)
y_pred = y_true + 1
assert_almost_equal(mean_squared_error(y_true, y_pred), 1.)
assert_almost_equal(mean_squared_log_error(y_true, y_pred),
mean_squared_error(np.log(1 + y_true),
np.log(1 + y_pred)))
assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.)
assert_almost_equal(median_absolute_error(y_true, y_pred), 1.)
assert_almost_equal(max_error(y_true, y_pred), 1.)
assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2)
assert_almost_equal(explained_variance_score(y_true, y_pred), 1.)
示例15: compute
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import explained_variance_score [as 别名]
def compute(labels, pred_scores):
return explained_variance_score(labels, pred_scores)