本文整理汇总了Python中sklearn.metrics.classification_report方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.classification_report方法的具体用法?Python metrics.classification_report怎么用?Python metrics.classification_report使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.metrics
的用法示例。
在下文中一共展示了metrics.classification_report方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train_and_evaluate
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def train_and_evaluate(clf, X_train, X_test, y_train, y_test):
clf.fit(X_train, y_train)
print ("Accuracy on training set:")
print (clf.score(X_train, y_train))
print ("Accuracy on testing set:")
print (clf.score(X_test, y_test))
y_pred = clf.predict(X_test)
print ("Classification Report:")
print (metrics.classification_report(y_test, y_pred))
print ("Confusion Matrix:")
print (metrics.confusion_matrix(y_test, y_pred))
# ===============================================================================
# from FaceDetectPredict.py
# ===============================================================================
开发者ID:its-izhar,项目名称:Emotion-Recognition-Using-SVMs,代码行数:18,代码来源:Train Classifier and Test Video Feed.py
示例2: eval_batch_col
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def eval_batch_col(classifier, val_dataset, batch_size, device):
val_batch_generator = datasets.generate_batches_col(val_dataset,
batch_size=batch_size,
shuffle=False,
drop_last=True,
device=device)
y_pred, y_true = [], []
for batch_idx, batch_dict in enumerate(val_batch_generator):
y = batch_dict["label"]
X = batch_dict["data"]
# Pred
pred = classifier(X)
y_pred.extend(pred.cpu().numpy())
y_true.extend(y.cpu().numpy())
report = classification_report(y_true, np.argmax(y_pred, axis=1), output_dict=True)
return report
# evaluate and return prediction & true labels of a table batch
示例3: multi_class_classification
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def multi_class_classification(data_X,data_Y):
'''
calculate multi-class classification and return related evaluation metrics
'''
svc = svm.SVC(C=1, kernel='linear')
# X_train, X_test, y_train, y_test = train_test_split( data_X, data_Y, test_size=0.4, random_state=0)
clf = svc.fit(data_X, data_Y) #svm
# array = svc.coef_
# print array
predicted = cross_val_predict(clf, data_X, data_Y, cv=2)
print "accuracy",metrics.accuracy_score(data_Y, predicted)
print "f1 score macro",metrics.f1_score(data_Y, predicted, average='macro')
print "f1 score micro",metrics.f1_score(data_Y, predicted, average='micro')
print "precision score",metrics.precision_score(data_Y, predicted, average='macro')
print "recall score",metrics.recall_score(data_Y, predicted, average='macro')
print "hamming_loss",metrics.hamming_loss(data_Y, predicted)
print "classification_report", metrics.classification_report(data_Y, predicted)
print "jaccard_similarity_score", metrics.jaccard_similarity_score(data_Y, predicted)
# print "log_loss", metrics.log_loss(data_Y, predicted)
print "zero_one_loss", metrics.zero_one_loss(data_Y, predicted)
# print "AUC&ROC",metrics.roc_auc_score(data_Y, predicted)
# print "matthews_corrcoef", metrics.matthews_corrcoef(data_Y, predicted)
示例4: evaluation_analysis
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def evaluation_analysis(true_label,predicted):
'''
return all metrics results
'''
print "accuracy",metrics.accuracy_score(true_label, predicted)
print "f1 score macro",metrics.f1_score(true_label, predicted, average='macro')
print "f1 score micro",metrics.f1_score(true_label, predicted, average='micro')
print "precision score",metrics.precision_score(true_label, predicted, average='macro')
print "recall score",metrics.recall_score(true_label, predicted, average='macro')
print "hamming_loss",metrics.hamming_loss(true_label, predicted)
print "classification_report", metrics.classification_report(true_label, predicted)
print "jaccard_similarity_score", metrics.jaccard_similarity_score(true_label, predicted)
print "log_loss", metrics.log_loss(true_label, predicted)
print "zero_one_loss", metrics.zero_one_loss(true_label, predicted)
print "AUC&ROC",metrics.roc_auc_score(true_label, predicted)
print "matthews_corrcoef", metrics.matthews_corrcoef(true_label, predicted)
示例5: score_binary_classification
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def score_binary_classification(y, y_hat, report=True):
"""
Create binary classification output
:param y: true value
:param y_hat: class 1 probabilities
:param report:
:return:
"""
y_hat_class = [1 if x >= 0.5 else 0 for x in y_hat] # convert probability to class for classification report
report_string = "---Binary Classification Score--- \n"
report_string += classification_report(y, y_hat_class)
score = roc_auc_score(y, y_hat)
report_string += "\nAUC = " + str(score)
if report:
print(report_string)
return score, report_string
示例6: score_multiclass_classification
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def score_multiclass_classification(y, y_hat, report=True):
"""
Create multiclass classification score
:param y:
:param y_hat:
:return:
"""
report_string = "---Multiclass Classification Score--- \n"
report_string += classification_report(y, y_hat)
score = accuracy_score(y, y_hat)
report_string += "\nAccuracy = " + str(score)
if report:
print(report_string)
return score, report_string
示例7: print_evaluation
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def print_evaluation(model,data,ls,log=None):
features,actual = data
predictions = predict(model, features, 500).data.numpy().reshape(-1).tolist()
labels = [ls.idx[i] for i, _ in enumerate(ls.idx)]
actual = [labels[i] for i in actual]
predictions = [labels[i] for i in predictions]
print(accuracy_score(actual, predictions))
print(classification_report(actual, predictions))
print(confusion_matrix(actual, predictions))
data = zip(actual,predictions)
if log is not None:
f = open(log, "w+")
for a,p in data:
f.write(json.dumps({"actual": a, "predicted": p}) + "\n")
f.close()
示例8: evaluate
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def evaluate(config, model, data_iter, test=False):
model.eval()
loss_total = 0
predict_all = np.array([], dtype=int)
labels_all = np.array([], dtype=int)
with torch.no_grad():
for texts, labels in data_iter:
outputs = model(texts)
loss = F.cross_entropy(outputs, labels)
loss_total += loss
labels = labels.data.cpu().numpy()
predic = torch.max(outputs.data, 1)[1].cpu().numpy()
labels_all = np.append(labels_all, labels)
predict_all = np.append(predict_all, predic)
acc = metrics.accuracy_score(labels_all, predict_all)
if test:
report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4)
confusion = metrics.confusion_matrix(labels_all, predict_all)
return acc, loss_total / len(data_iter), report, confusion
return acc, loss_total / len(data_iter)
示例9: calc_test_result
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def calc_test_result(result, test_label, test_mask):
true_label=[]
predicted_label=[]
for i in range(result.shape[0]):
for j in range(result.shape[1]):
if test_mask[i,j]==1:
true_label.append(np.argmax(test_label[i,j] ))
predicted_label.append(np.argmax(result[i,j] ))
print("Confusion Matrix :")
print(confusion_matrix(true_label, predicted_label))
print("Classification Report :")
print(classification_report(true_label, predicted_label,digits=4))
print("Accuracy ", accuracy_score(true_label, predicted_label))
print("Macro Classification Report :")
print(precision_recall_fscore_support(true_label, predicted_label,average='macro'))
print("Weighted Classification Report :")
print(precision_recall_fscore_support(true_label, predicted_label,average='weighted'))
#print "Normal Classification Report :"
#print precision_recall_fscore_support(true_label, predicted_label)
示例10: main
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def main():
args = parse_args()
features_extractor = FaceFeaturesExtractor()
embeddings, labels, class_to_idx = load_data(args, features_extractor)
clf = train(args, embeddings, labels)
idx_to_class = {v: k for k, v in class_to_idx.items()}
target_names = map(lambda i: i[1], sorted(idx_to_class.items(), key=lambda i: i[0]))
print(metrics.classification_report(labels, clf.predict(embeddings), target_names=list(target_names)))
if not os.path.isdir(MODEL_DIR_PATH):
os.mkdir(MODEL_DIR_PATH)
model_path = os.path.join('model', 'face_recogniser.pkl')
joblib.dump(FaceRecogniser(features_extractor, clf, idx_to_class), model_path)
示例11: learn_structure
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def learn_structure(self, samples):
X_train, X_train_label, X_test, X_test_label = \
self._generate_train_test_sets(samples, 0.75)
logger.info('Training with ' + str(len(X_train)) +
'samples; testing with ' + str(len(X_test)) + ' samples.')
svc_detector = self._get_best_detector(X_train, X_train_label)
Y_test = svc_detector.predict(X_test)
num_anomalies = Y_test[Y_test == ANOMALY].size
logger.info('Found ' + str(num_anomalies) +
' anomalies in testing set')
logger.info('Confusion Matrix: \n{}'.
format(classification_report(
X_test_label,
Y_test,
target_names=['no', 'yes'])))
return svc_detector
示例12: learn_structure
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def learn_structure(self, samples):
X_train, X_train_label, X_test, X_test_label = \
self._generate_train_test_sets(samples, 0.75)
logger.info('Training with ' + str(len(X_train)) +
'samples; testing with ' + str(len(X_test)) + ' samples.')
dt_detector = self._get_best_detector(X_train, X_train_label)
Y_test = dt_detector.predict(X_test)
num_anomalies = Y_test[Y_test == ANOMALY].size
logger.info('Found ' + str(num_anomalies) +
' anomalies in testing set')
logger.info('Confusion Matrix: \n{}'.
format(classification_report(
X_test_label,
Y_test,
target_names=['no', 'yes'])))
return dt_detector
示例13: learn_structure
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def learn_structure(self, samples):
X_train, X_train_label, X_test, X_test_label = \
self._generate_train_test_sets(samples, 0.75)
logger.info('Training with ' + str(len(X_train)) +
'samples; testing with ' + str(len(X_test)) + ' samples.')
lr_detector = self._get_best_detector(X_train, X_train_label)
Y_test = lr_detector.predict(X_test)
num_anomalies = Y_test[Y_test == ANOMALY].size
logger.info('Found ' + str(num_anomalies) +
' anomalies in testing set')
logger.info('Confusion Matrix: \n{}'.
format(classification_report(
X_test_label,
Y_test,
target_names=['no', 'yes'])))
return lr_detector
示例14: learn_structure
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def learn_structure(self, samples):
X_train, X_train_label, X_test, X_test_label = \
self._generate_train_test_sets(samples, 0.75)
logger.info('Training with ' + str(len(X_train)) +
'samples; testing with ' + str(len(X_test)) + ' samples.')
rf_detector = self._get_best_detector(X_train, X_train_label)
Y_test = rf_detector.predict(X_test)
num_anomalies = Y_test[Y_test == ANOMALY].size
logger.info('Found ' + str(num_anomalies) +
' anomalies in testing set')
logger.info('Confusion Matrix: \n{}'.
format(classification_report(
X_test_label,
Y_test,
target_names=['no', 'yes'])))
return rf_detector
示例15: test_classification_report_multiclass
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import classification_report [as 别名]
def test_classification_report_multiclass():
# Test performance report
iris = datasets.load_iris()
y_true, y_pred, _ = make_prediction(dataset=iris, binary=False)
# print classification report with class names
expected_report = """\
precision recall f1-score support
setosa 0.83 0.79 0.81 24
versicolor 0.33 0.10 0.15 31
virginica 0.42 0.90 0.57 20
accuracy 0.53 75
macro avg 0.53 0.60 0.51 75
weighted avg 0.51 0.53 0.47 75
"""
report = classification_report(
y_true, y_pred, labels=np.arange(len(iris.target_names)),
target_names=iris.target_names)
assert_equal(report, expected_report)