本文整理汇总了Python中sklearn.metrics.average_precision_score方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.average_precision_score方法的具体用法?Python metrics.average_precision_score怎么用?Python metrics.average_precision_score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.metrics
的用法示例。
在下文中一共展示了metrics.average_precision_score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def test(self, z, pos_edge_index, neg_edge_index):
r"""Given latent variables :obj:`z`, positive edges
:obj:`pos_edge_index` and negative edges :obj:`neg_edge_index`,
computes area under the ROC curve (AUC) and average precision (AP)
scores.
Args:
z (Tensor): The latent space :math:`\mathbf{Z}`.
pos_edge_index (LongTensor): The positive edges to evaluate
against.
neg_edge_index (LongTensor): The negative edges to evaluate
against.
"""
pos_y = z.new_ones(pos_edge_index.size(1))
neg_y = z.new_zeros(neg_edge_index.size(1))
y = torch.cat([pos_y, neg_y], dim=0)
pos_pred = self.decoder(z, pos_edge_index, sigmoid=True)
neg_pred = self.decoder(z, neg_edge_index, sigmoid=True)
pred = torch.cat([pos_pred, neg_pred], dim=0)
y, pred = y.detach().cpu().numpy(), pred.detach().cpu().numpy()
return roc_auc_score(y, pred), average_precision_score(y, pred)
示例2: get_all_metrics
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def get_all_metrics(model, eval_data, eval_labels, pred_labels):
fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
auc_ = auc(fpr, tpr)
print("auc_keras:" + str(auc_))
score = model.evaluate(eval_data, eval_labels, verbose=0)
print("Test accuracy: " + str(score[1]))
precision = precision_score(eval_labels, pred_labels)
print('Precision score: {0:0.2f}'.format(precision))
recall = recall_score(eval_labels, pred_labels)
print('Recall score: {0:0.2f}'.format(recall))
f1 = f1_score(eval_labels, pred_labels)
print('F1 score: {0:0.2f}'.format(f1))
average_precision = average_precision_score(eval_labels, pred_labels)
print('Average precision-recall score: {0:0.2f}'.format(average_precision))
return auc_, score[1], precision, recall, f1, average_precision, fpr, tpr
示例3: get_all_metrics_
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def get_all_metrics_(eval_labels, pred_labels):
fpr, tpr, thresholds_keras = roc_curve(eval_labels, pred_labels)
auc_ = auc(fpr, tpr)
print("auc_keras:" + str(auc_))
precision = precision_score(eval_labels, pred_labels)
print('Precision score: {0:0.2f}'.format(precision))
recall = recall_score(eval_labels, pred_labels)
print('Recall score: {0:0.2f}'.format(recall))
f1 = f1_score(eval_labels, pred_labels)
print('F1 score: {0:0.2f}'.format(f1))
average_precision = average_precision_score(eval_labels, pred_labels)
print('Average precision-recall score: {0:0.2f}'.format(average_precision))
return auc_, precision, recall, f1, average_precision, fpr, tpr
示例4: test
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def test(data, model, epoch, args):
model.eval()
n_iters = 0
ap_sum = 0.0
progress_bar = tqdm(data)
for batch_idx, sample_batched in enumerate(progress_bar):
img, target = load_tensor_data(sample_batched, args.cuda, volatile=True)
output = model(img)
ap = average_precision_score(target.data, output.data)
n_iters += 1
ap_sum += ap
if batch_idx % args.log_interval == 0:
m_ap = ap_sum / n_iters
progress_bar.set_postfix(dict(AP='{:.2}'.format(m_ap)))
m_ap = ap_sum / n_iters
print('Test Epoch {}: Avg. Precision Score = {:.2};'.format(epoch, m_ap))
示例5: calculate_scores
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def calculate_scores(y_predicted, y_true):
"""
Function to calculate different performance scores
"""
accuracy = accuracy_score(y_pred=y_predicted, y_true=y_true)
precision = precision_score(y_pred=y_predicted, y_true=y_true)
average_precision_score1 = average_precision_score(y_score=y_predicted, y_true=y_true)
f1_score1 = f1_score(y_pred=y_predicted, y_true=y_true)
print("Accuracy score:", accuracy)
print("Precision score:", precision)
print("Average Precision score:", average_precision_score1)
print("F1 score:", f1_score1)
print("Outlier detection and/or treatment completed.")
return {"accuracy": accuracy,
"precision": precision,
"average_precision_score": average_precision_score1,
"f1_score": f1_score1,
}
示例6: _average_precision_slow
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def _average_precision_slow(y_true, y_score):
"""A second alternative implementation of average precision that closely
follows the Wikipedia article's definition (see References). This should
give identical results as `average_precision_score` for all inputs.
References
----------
.. [1] `Wikipedia entry for the Average precision
<https://en.wikipedia.org/wiki/Average_precision>`_
"""
precision, recall, threshold = precision_recall_curve(y_true, y_score)
precision = list(reversed(precision))
recall = list(reversed(recall))
average_precision = 0
for i in range(1, len(precision)):
average_precision += precision[i] * (recall[i] - recall[i - 1])
return average_precision
示例7: test_average_precision_score_pos_label_errors
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def test_average_precision_score_pos_label_errors():
# Raise an error when pos_label is not in binary y_true
y_true = np.array([0, 1])
y_pred = np.array([0, 1])
error_message = ("pos_label=2 is invalid. Set it to a label in y_true.")
assert_raise_message(ValueError, error_message, average_precision_score,
y_true, y_pred, pos_label=2)
# Raise an error for multilabel-indicator y_true with
# pos_label other than 1
y_true = np.array([[1, 0], [0, 1], [0, 1], [1, 0]])
y_pred = np.array([[0.9, 0.1], [0.1, 0.9], [0.8, 0.2], [0.2, 0.8]])
error_message = ("Parameter pos_label is fixed to 1 for multilabel"
"-indicator y_true. Do not set pos_label or set "
"pos_label to 1.")
assert_raise_message(ValueError, error_message, average_precision_score,
y_true, y_pred, pos_label=0)
示例8: test_score_scale_invariance
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def test_score_scale_invariance():
# Test that average_precision_score and roc_auc_score are invariant by
# the scaling or shifting of probabilities
# This test was expanded (added scaled_down) in response to github
# issue #3864 (and others), where overly aggressive rounding was causing
# problems for users with very small y_score values
y_true, _, probas_pred = make_prediction(binary=True)
roc_auc = roc_auc_score(y_true, probas_pred)
roc_auc_scaled_up = roc_auc_score(y_true, 100 * probas_pred)
roc_auc_scaled_down = roc_auc_score(y_true, 1e-6 * probas_pred)
roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10)
assert_equal(roc_auc, roc_auc_scaled_up)
assert_equal(roc_auc, roc_auc_scaled_down)
assert_equal(roc_auc, roc_auc_shifted)
pr_auc = average_precision_score(y_true, probas_pred)
pr_auc_scaled_up = average_precision_score(y_true, 100 * probas_pred)
pr_auc_scaled_down = average_precision_score(y_true, 1e-6 * probas_pred)
pr_auc_shifted = average_precision_score(y_true, probas_pred - 10)
assert_equal(pr_auc, pr_auc_scaled_up)
assert_equal(pr_auc, pr_auc_scaled_down)
assert_equal(pr_auc, pr_auc_shifted)
示例9: score_link_prediction
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def score_link_prediction(labels, scores):
"""
Calculates the area under the ROC curve and the average precision score.
Parameters
----------
labels : array-like, shape [N]
The ground truth labels
scores : array-like, shape [N]
The (unnormalized) scores of how likely are the instances
Returns
-------
roc_auc : float
Area under the ROC curve score
ap : float
Average precision score
"""
return roc_auc_score(labels, scores), average_precision_score(labels, scores)
示例10: average_precision_compute_fn
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def average_precision_compute_fn(y_preds, y_targets, mask, activation=None):
try:
from sklearn.metrics import average_precision_score
except ImportError:
raise RuntimeError("This contrib module requires sklearn to be installed.")
y_true = y_targets.numpy()
if activation is not None:
y_preds = activation(y_preds)
y_pred = y_preds.numpy()
if mask is not None:
y_true = y_true[:, mask]
y_pred = y_pred[:, mask]
return average_precision_score(y_true, y_pred)
示例11: get_ap
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def get_ap(self, q_name, sorted_idx):
rel = self.__relevants[q_name]
junk = self.__junk[q_name]
# construct ground-truth and scores:
y_scores = np.zeros(self.N_images)
y_true = np.zeros(self.N_images)
for e,i in enumerate(sorted_idx): y_scores[i] = self.N_images - e
for i in rel: y_true[i] = 1
# remove junk:
y_scores = np.delete(y_scores, junk)
y_true = np.delete(y_true, junk)
# compute ap:
return average_precision_score(y_true, y_scores)
示例12: plot_PR_curve
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def plot_PR_curve(classifier):
precision, recall, thresholds = precision_recall_curve(DataPrep.test_news['Label'], classifier)
average_precision = average_precision_score(DataPrep.test_news['Label'], classifier)
plt.step(recall, precision, color='b', alpha=0.2,
where='post')
plt.fill_between(recall, precision, step='post', alpha=0.2,
color='b')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('2-class Random Forest Precision-Recall curve: AP={0:0.2f}'.format(
average_precision))
示例13: report_metrics
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def report_metrics(y_dset, y_pred, batch_size, dset='Val'):
# Print additional metrics involving predictions
n_rows = (y_dset.shape[0] / batch_size) * batch_size
y_true = y_dset[0:n_rows, :].flatten()
y_pred = y_pred.flatten()
val_ap = average_precision_score(y_true, y_pred)
val_roc = roc_auc_score(y_true, y_pred)
n = y_true.size
n_pos = y_true.sum()
idx_sorted = np.argsort(-y_pred)
val_rec = []
logging.info(dset + "-AP {:.6f}".format(val_ap))
logging.info(dset + "-ROC {:.6f}".format(val_roc))
for i, v in enumerate([10, 25, 50, 75, 100]):
tp = y_true[idx_sorted[:int(v * n / 100)]].sum()
val_rec.append(tp * 1.0 / n_pos)
logging.info(dset + "-R{} {:.6f}".format(v, val_rec[i]))
return val_ap, val_rec[2]
# ############################## Main program #################################
示例14: evaluate_embedding_link_prediction
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def evaluate_embedding_link_prediction(adj_matrix, node_pairs, embedding_matrix, norm=False):
"""Evaluate the node embeddings on the link prediction task.
:param adj_matrix: sp.csr_matrix, shape [n_nodes, n_nodes]
Adjacency matrix of the graph
:param node_pairs:
:param embedding_matrix: np.ndarray, shape [n_nodes, embedding_dim]
Embedding matrix
:param norm: bool
Whether to normalize the embeddings
:return: float, float
Average precision (AP) score and area under ROC curve (AUC) score
"""
if norm:
embedding_matrix = normalize(embedding_matrix)
true = adj_matrix[node_pairs[:, 0], node_pairs[:, 1]].A1
scores = (embedding_matrix[node_pairs[:, 0]] * embedding_matrix[node_pairs[:, 1]]).sum(1)
auc_score, ap_score = roc_auc_score(true, scores), average_precision_score(true, scores)
return auc_score, ap_score
示例15: __call__
# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import average_precision_score [as 别名]
def __call__(self, args, env):
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import average_precision_score
from sklearn.metrics import precision_recall_curve
from vergeml.plots import load_labels, load_predictions
try:
labels = load_labels(env)
except FileNotFoundError:
raise VergeMLError("Can't plot PR curve - not supported by model.")
nclasses = len(labels)
if args['class'] not in labels:
raise VergeMLError("Unknown class: " + args['class'])
try:
y_test, y_score = load_predictions(env, nclasses)
except FileNotFoundError:
raise VergeMLError("Can't plot PR curve - not supported by model.")
# From:
# https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html#sphx-glr-auto-examples-model-selection-plot-precision-recall-py
ix = labels.index(args['class'])
y_test = y_test[:,ix].astype(np.int)
y_score = y_score[:,ix]
precision, recall, _ = precision_recall_curve(y_test, y_score)
average_precision = average_precision_score(y_test, y_score)
plt.step(recall, precision, color='b', alpha=0.2, where='post')
plt.fill_between(recall, precision, alpha=0.2, color='b', step='post')
plt.xlabel('Recall ({})'.format(args['class']))
plt.ylabel('Precision ({})'.format(args['class']))
plt.ylim([0.0, 1.05])
plt.xlim([0.0, 1.0])
plt.title('Precision-Recall curve for @{0}: AP={1:0.2f}'.format(args['@AI'], average_precision))
plt.show()