当前位置: 首页>>代码示例>>Python>>正文


Python metrics.adjusted_rand_score方法代码示例

本文整理汇总了Python中sklearn.metrics.adjusted_rand_score方法的典型用法代码示例。如果您正苦于以下问题:Python metrics.adjusted_rand_score方法的具体用法?Python metrics.adjusted_rand_score怎么用?Python metrics.adjusted_rand_score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.metrics的用法示例。


在下文中一共展示了metrics.adjusted_rand_score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: clustering_scores

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def clustering_scores(self, prediction_algorithm: str = "knn") -> Tuple:
        if self.gene_dataset.n_labels > 1:
            latent, _, labels = self.get_latent()
            if prediction_algorithm == "knn":
                labels_pred = KMeans(
                    self.gene_dataset.n_labels, n_init=200
                ).fit_predict(
                    latent
                )  # n_jobs>1 ?
            elif prediction_algorithm == "gmm":
                gmm = GMM(self.gene_dataset.n_labels)
                gmm.fit(latent)
                labels_pred = gmm.predict(latent)

            asw_score = silhouette_score(latent, labels)
            nmi_score = NMI(labels, labels_pred)
            ari_score = ARI(labels, labels_pred)
            uca_score = unsupervised_clustering_accuracy(labels, labels_pred)[0]
            logger.debug(
                "Clustering Scores:\nSilhouette: %.4f\nNMI: %.4f\nARI: %.4f\nUCA: %.4f"
                % (asw_score, nmi_score, ari_score, uca_score)
            )
            return asw_score, nmi_score, ari_score, uca_score 
开发者ID:YosefLab,项目名称:scVI,代码行数:25,代码来源:posterior.py

示例2: test_spectral_clustering

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def test_spectral_clustering(eigen_solver, assign_labels):
    S = np.array([[1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
                  [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
                  [1.0, 1.0, 1.0, 0.2, 0.0, 0.0, 0.0],
                  [0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0],
                  [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
                  [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0],
                  [0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0]])

    for mat in (S, sparse.csr_matrix(S)):
        model = SpectralClustering(random_state=0, n_clusters=2,
                                   affinity='precomputed',
                                   eigen_solver=eigen_solver,
                                   assign_labels=assign_labels
                                   ).fit(mat)
        labels = model.labels_
        if labels[0] == 0:
            labels = 1 - labels

        assert adjusted_rand_score(labels, [1, 1, 1, 0, 0, 0, 0]) == 1

        model_copy = pickle.loads(pickle.dumps(model))
        assert model_copy.n_clusters == model.n_clusters
        assert model_copy.eigen_solver == model.eigen_solver
        assert_array_equal(model_copy.labels_, model.labels_) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:27,代码来源:test_spectral.py

示例3: test_discretize

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def test_discretize(n_samples):
    # Test the discretize using a noise assignment matrix
    random_state = np.random.RandomState(seed=8)
    for n_class in range(2, 10):
        # random class labels
        y_true = random_state.randint(0, n_class + 1, n_samples)
        y_true = np.array(y_true, np.float)
        # noise class assignment matrix
        y_indicator = sparse.coo_matrix((np.ones(n_samples),
                                         (np.arange(n_samples),
                                          y_true)),
                                        shape=(n_samples,
                                               n_class + 1))
        y_true_noisy = (y_indicator.toarray()
                        + 0.1 * random_state.randn(n_samples,
                                                   n_class + 1))
        y_pred = discretize(y_true_noisy, random_state)
        assert adjusted_rand_score(y_true, y_pred) > 0.8 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:20,代码来源:test_spectral.py

示例4: calculate_metrics

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def calculate_metrics(y_true, y_pred,duration,clustering=False):
    """
    Return a data frame that contains the precision, accuracy, recall and the duration
    For clustering it applys the adjusted rand index
    """
    if clustering == False:
        res = pd.DataFrame(data = np.zeros((1,5),dtype=np.float), index=[0], 
            columns=['precision','accuracy','error','recall','duration'])
        res['precision'] = precision_score(y_true,y_pred,average='macro')
        res['accuracy'] = accuracy_score(y_true,y_pred)
        res['recall'] = recall_score(y_true,y_pred,average='macro')
        res['duration'] = duration
        res['error'] = 1-res['accuracy']
        return res
    else: 
        res = pd.DataFrame(data = np.zeros((1,2),dtype=np.float), index=[0], 
            columns=['ari','duration'])
        res['duration']=duration
        res['ari'] = adjusted_rand_score(y_pred,y_true)
        return res 
开发者ID:hfawaz,项目名称:aaltd18,代码行数:22,代码来源:utils.py

示例5: compare_segms_metric_ars

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def compare_segms_metric_ars(dict_segm_a, dict_segm_b, suffix=''):
    """ compute ARS for each pair of segmentation

    :param {str: ndarray} dict_segm_a:
    :param {str: ndarray} dict_segm_b:
    :param str suffix:
    :return DF:
    """
    df_ars = pd.DataFrame()
    for n in dict_segm_a:
        if n not in dict_segm_b:
            logging.warning('particular key "%s" is missing in dictionary', n)
            continue
        y_a = dict_segm_a[n].ravel()
        y_b = dict_segm_b[n].ravel()
        dict_ars = {'image': n,
                    'ARS' + suffix: metrics.adjusted_rand_score(y_a, y_b)}
        df_ars = df_ars.append(dict_ars, ignore_index=True)
    df_ars.set_index(['image'], inplace=True)
    return df_ars 
开发者ID:Borda,项目名称:pyImSegm,代码行数:22,代码来源:run_segm_slic_model_graphcut.py

示例6: init_prob_kmeans

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def init_prob_kmeans(model, eval_loader, args):
    torch.manual_seed(1)
    model = model.to(device)
    # cluster parameter initiate
    model.eval()
    targets = np.zeros(len(eval_loader.dataset)) 
    feats = np.zeros((len(eval_loader.dataset), 512))
    for _, (x, label, idx) in enumerate(eval_loader):
        x = x.to(device)
        feat = model(x)
        idx = idx.data.cpu().numpy()
        feats[idx, :] = feat.data.cpu().numpy()
        targets[idx] = label.data.cpu().numpy()
    pca = PCA(n_components=args.n_clusters)
    feats = pca.fit_transform(feats)
    kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
    y_pred = kmeans.fit_predict(feats) 
    acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
    print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
    return acc, nmi, ari, kmeans.cluster_centers_, probs 
开发者ID:k-han,项目名称:DTC,代码行数:23,代码来源:imagenet2cifar_DTC.py

示例7: test

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def test(model, test_loader, args):
    model.eval()
    acc_record = AverageMeter()
    preds=np.array([])
    targets=np.array([])
    feats = np.zeros((len(test_loader.dataset), args.n_clusters))
    probs= np.zeros((len(test_loader.dataset), args.n_clusters))
    for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
        x, label = x.to(device), label.to(device)
        feat = model(x)
        prob = feat2prob(feat, model.center)
        _, pred = prob.max(1)
        targets=np.append(targets, label.cpu().numpy())
        preds=np.append(preds, pred.cpu().numpy())
        idx = idx.data.cpu().numpy()
        feats[idx, :] = feat.cpu().detach().numpy()
        probs[idx, :] = prob.cpu().detach().numpy()
    acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
    print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = torch.from_numpy(probs)
    return acc, nmi, ari, probs 
开发者ID:k-han,项目名称:DTC,代码行数:23,代码来源:imagenet2cifar_DTC.py

示例8: init_prob_kmeans

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def init_prob_kmeans(model, eval_loader, args):
    torch.manual_seed(1)
    model = model.to(device)
    # cluster parameter initiate
    model.eval()
    targets = np.zeros(len(eval_loader.dataset)) 
    feats = np.zeros((len(eval_loader.dataset), 512))
    for _, (x, label, idx) in enumerate(eval_loader):
        x = x.to(device)
        feat = model(x)
        feat = feat.view(x.size(0), -1)
        idx = idx.data.cpu().numpy()
        feats[idx, :] = feat.data.cpu().numpy()
        targets[idx] = label.data.cpu().numpy()
    # evaluate clustering performance
    pca = PCA(n_components=args.n_clusters)
    feats = pca.fit_transform(feats)
    kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
    y_pred = kmeans.fit_predict(feats) 
    acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
    print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
    return acc, nmi, ari, kmeans.cluster_centers_, probs 
开发者ID:k-han,项目名称:DTC,代码行数:25,代码来源:imagenet_DTC.py

示例9: test

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def test(model, test_loader, args, epoch=0):
    model.eval()
    acc_record = AverageMeter()
    preds=np.array([])
    targets=np.array([])
    feats = np.zeros((len(test_loader.dataset), args.n_clusters))
    probs = np.zeros((len(test_loader.dataset), args.n_clusters))
    for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
        x, label = x.to(device), label.to(device)
        output = model(x)
        prob = feat2prob(output, model.center)
        _, pred = prob.max(1)
        targets=np.append(targets, label.cpu().numpy())
        preds=np.append(preds, pred.cpu().numpy())
        idx = idx.data.cpu().numpy()
        feats[idx, :] = output.cpu().detach().numpy()
        probs[idx, :]= prob.cpu().detach().numpy()
    acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
    print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    return acc, nmi, ari, torch.from_numpy(probs) 
开发者ID:k-han,项目名称:DTC,代码行数:22,代码来源:imagenet_DTC.py

示例10: init_prob_kmeans

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def init_prob_kmeans(model, eval_loader, args):
    torch.manual_seed(1)
    model = model.to(device)
    # cluster parameter initiate
    model.eval()
    targets = np.zeros(len(eval_loader.dataset)) 
    feats = np.zeros((len(eval_loader.dataset), 512))
    for _, (x, label, idx) in enumerate(eval_loader):
        x = x.to(device)
        feat = model(x)
        idx = idx.data.cpu().numpy()
        feats[idx, :] = feat.data.cpu().numpy()
        targets[idx] = label.data.cpu().numpy()
    # evaluate clustering performance
    pca = PCA(n_components=args.n_clusters)
    feats = pca.fit_transform(feats)
    kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
    y_pred = kmeans.fit_predict(feats) 
    acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
    print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
    return acc, nmi, ari, kmeans.cluster_centers_, probs 
开发者ID:k-han,项目名称:DTC,代码行数:24,代码来源:cifar10_DTC.py

示例11: test

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def test(model, test_loader, args):
    model.eval()
    preds=np.array([])
    targets=np.array([])
    feats = np.zeros((len(test_loader.dataset), args.n_clusters))
    probs= np.zeros((len(test_loader.dataset), args.n_clusters))
    for batch_idx, (x, label, idx) in enumerate(tqdm(test_loader)):
        x, label = x.to(device), label.to(device)
        feat = model(x)
        prob = feat2prob(feat, model.center)
        _, pred = prob.max(1)
        targets=np.append(targets, label.cpu().numpy())
        preds=np.append(preds, pred.cpu().numpy())
        idx = idx.data.cpu().numpy()
        feats[idx, :] = feat.cpu().detach().numpy()
        probs[idx, :] = prob.cpu().detach().numpy()
    acc, nmi, ari = cluster_acc(targets.astype(int), preds.astype(int)), nmi_score(targets, preds), ari_score(targets, preds)
    print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = torch.from_numpy(probs)
    return acc, nmi, ari, probs 
开发者ID:k-han,项目名称:DTC,代码行数:22,代码来源:cifar10_DTC.py

示例12: init_prob_kmeans

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def init_prob_kmeans(model, eval_loader, args):
    torch.manual_seed(1)
    model = model.to(device)
    # cluster parameter initiate
    model.eval()
    targets = np.zeros(len(eval_loader.dataset)) 
    feats = np.zeros((len(eval_loader.dataset), 512))
    for _, (x, label, idx) in enumerate(eval_loader):
        x = x.to(device)
        _, feat = model(x)
        idx = idx.data.cpu().numpy()
        feats[idx, :] = feat.data.cpu().numpy()
        targets[idx] = label.data.cpu().numpy()
    # evaluate clustering performance
    pca = PCA(n_components=args.n_clusters)
    feats = pca.fit_transform(feats)
    kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
    y_pred = kmeans.fit_predict(feats) 
    acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
    print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
    return acc, nmi, ari, kmeans.cluster_centers_, probs 
开发者ID:k-han,项目名称:DTC,代码行数:24,代码来源:cifar100_DTC.py

示例13: init_prob_kmeans

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def init_prob_kmeans(model, eval_loader, args):
    torch.manual_seed(1)
    model = model.to(device)
    # cluster parameter initiate
    model.eval()
    targets = np.zeros(len(eval_loader.dataset)) 
    feats = np.zeros((len(eval_loader.dataset), 1024))
    for _, (x, _, label, idx) in enumerate(eval_loader):
        x = x.to(device)
        _, feat = model(x)
        feat = feat.view(x.size(0), -1)
        idx = idx.data.cpu().numpy()
        feats[idx, :] = feat.data.cpu().numpy()
        targets[idx] = label.data.cpu().numpy()
    # evaluate clustering performance
    pca = PCA(n_components=args.n_clusters)
    feats = pca.fit_transform(feats)
    kmeans = KMeans(n_clusters=args.n_clusters, n_init=20)
    y_pred = kmeans.fit_predict(feats) 
    acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
    print('Init acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = feat2prob(torch.from_numpy(feats), torch.from_numpy(kmeans.cluster_centers_))
    return kmeans.cluster_centers_, probs 
开发者ID:k-han,项目名称:DTC,代码行数:25,代码来源:omniglot_DTC.py

示例14: test

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def test(model, eval_loader, args):
    model.eval()
    targets = np.zeros(len(eval_loader.dataset)) 
    y_pred = np.zeros(len(eval_loader.dataset)) 
    probs= np.zeros((len(eval_loader.dataset), args.n_clusters))
    for _, (x, _, label, idx) in enumerate(eval_loader):
        x = x.to(device)
        _, feat = model(x)
        prob = feat2prob(feat, model.center)
        #  prob = F.softmax(logit, dim=1)
        idx = idx.data.cpu().numpy()
        y_pred[idx] = prob.data.cpu().detach().numpy().argmax(1)
        targets[idx] = label.data.cpu().numpy()
        probs[idx, :] = prob.cpu().detach().numpy()
    # evaluate clustering performance
    y_pred = y_pred.astype(np.int64)
    acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
    print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = torch.from_numpy(probs)
    return acc, nmi, ari, probs 
开发者ID:k-han,项目名称:DTC,代码行数:22,代码来源:omniglot_DTC.py

示例15: test

# 需要导入模块: from sklearn import metrics [as 别名]
# 或者: from sklearn.metrics import adjusted_rand_score [as 别名]
def test(model, eval_loader, args):
    model.eval()
    targets = np.zeros(len(eval_loader.dataset)) 
    y_pred = np.zeros(len(eval_loader.dataset)) 
    probs= np.zeros((len(eval_loader.dataset), args.n_clusters))
    for _, (x, _, label, idx) in enumerate(eval_loader):
        x = x.to(device)
        _, feat = model(x)
        prob = feat2prob(feat, model.center)
        idx = idx.data.cpu().numpy()
        y_pred[idx] = prob.data.cpu().detach().numpy().argmax(1)
        targets[idx] = label.data.cpu().numpy()
        probs[idx, :] = prob.cpu().detach().numpy()
    # evaluate clustering performance
    y_pred = y_pred.astype(np.int64)
    acc, nmi, ari = cluster_acc(targets, y_pred), nmi_score(targets, y_pred), ari_score(targets, y_pred)
    print('Test acc {:.4f}, nmi {:.4f}, ari {:.4f}'.format(acc, nmi, ari))
    probs = torch.from_numpy(probs)
    return acc, nmi, ari, probs 
开发者ID:k-han,项目名称:DTC,代码行数:21,代码来源:omniglot_DTC_unknown.py


注:本文中的sklearn.metrics.adjusted_rand_score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。