当前位置: 首页>>代码示例>>Python>>正文


Python linear_model.PassiveAggressiveClassifier方法代码示例

本文整理汇总了Python中sklearn.linear_model.PassiveAggressiveClassifier方法的典型用法代码示例。如果您正苦于以下问题:Python linear_model.PassiveAggressiveClassifier方法的具体用法?Python linear_model.PassiveAggressiveClassifier怎么用?Python linear_model.PassiveAggressiveClassifier使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.linear_model的用法示例。


在下文中一共展示了linear_model.PassiveAggressiveClassifier方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_main

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_main(self):
        categories, documents = get_docs_categories()
        clean_function = lambda text: '' if text.startswith('[') else text
        entity_types = set(['GPE'])
        term_doc_mat = (
            TermDocMatrixFactory(
                category_text_iter=zip(categories, documents),
                clean_function=clean_function,
                nlp=_testing_nlp,
                feats_from_spacy_doc=FeatsFromSpacyDoc(entity_types_to_censor=entity_types)
            ).build()
        )
        clf = PassiveAggressiveClassifier()
        fdc = FeatsFromDoc(term_doc_mat._term_idx_store,
                           clean_function=clean_function,
                           feats_from_spacy_doc=FeatsFromSpacyDoc(
                               entity_types_to_censor=entity_types)).set_nlp(_testing_nlp)
        tfidf = TfidfTransformer(norm='l1')
        X = tfidf.fit_transform(term_doc_mat._X)
        clf.fit(X, term_doc_mat._y)
        X_to_predict = fdc.feats_from_doc('Did sometimes march UNKNOWNWORD')
        pred = clf.predict(tfidf.transform(X_to_predict))
        dec = clf.decision_function(X_to_predict) 
开发者ID:JasonKessler,项目名称:scattertext,代码行数:25,代码来源:test_termDocMatrixFactory.py

示例2: passive_aggressive_train

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def passive_aggressive_train(self):
        '''Trains passive aggressive classifier

        '''
        self._clf = PassiveAggressiveClassifier(n_iter=50, C=0.2, n_jobs=-1, random_state=0)
        self._clf.fit(self._term_doc_matrix._X, self._term_doc_matrix._y)
        y_dist = self._clf.decision_function(self._term_doc_matrix._X)
        pos_ecdf = ECDF(y_dist[y_dist >= 0])
        neg_ecdf = ECDF(y_dist[y_dist <= 0])

        def proba_function(distance_from_hyperplane):
            if distance_from_hyperplane > 0:
                return pos_ecdf(distance_from_hyperplane) / 2. + 0.5
            elif distance_from_hyperplane < 0:
                return pos_ecdf(distance_from_hyperplane) / 2.
            return 0.5

        self._proba = proba_function
        return self 
开发者ID:JasonKessler,项目名称:scattertext,代码行数:21,代码来源:DeployedClassifier.py

示例3: test_partial_fit

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_partial_fit():
    est = PassiveAggressiveClassifier(random_state=0, shuffle=False,
                                      max_iter=5, tol=None)
    transformer = SelectFromModel(estimator=est)
    transformer.partial_fit(data, y,
                            classes=np.unique(y))
    old_model = transformer.estimator_
    transformer.partial_fit(data, y,
                            classes=np.unique(y))
    new_model = transformer.estimator_
    assert old_model is new_model

    X_transform = transformer.transform(data)
    transformer.fit(np.vstack((data, data)), np.concatenate((y, y)))
    assert_array_almost_equal(X_transform, transformer.transform(data))

    # check that if est doesn't have partial_fit, neither does SelectFromModel
    transformer = SelectFromModel(estimator=RandomForestClassifier())
    assert not hasattr(transformer, "partial_fit") 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:21,代码来源:test_from_model.py

示例4: test_learning_curve_batch_and_incremental_learning_are_equal

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_learning_curve_batch_and_incremental_learning_are_equal():
    X, y = make_classification(n_samples=30, n_features=1, n_informative=1,
                               n_redundant=0, n_classes=2,
                               n_clusters_per_class=1, random_state=0)
    train_sizes = np.linspace(0.2, 1.0, 5)
    estimator = PassiveAggressiveClassifier(max_iter=1, tol=None,
                                            shuffle=False)

    train_sizes_inc, train_scores_inc, test_scores_inc = \
        learning_curve(
            estimator, X, y, train_sizes=train_sizes,
            cv=3, exploit_incremental_learning=True)
    train_sizes_batch, train_scores_batch, test_scores_batch = \
        learning_curve(
            estimator, X, y, cv=3, train_sizes=train_sizes,
            exploit_incremental_learning=False)

    assert_array_equal(train_sizes_inc, train_sizes_batch)
    assert_array_almost_equal(train_scores_inc.mean(axis=1),
                              train_scores_batch.mean(axis=1))
    assert_array_almost_equal(test_scores_inc.mean(axis=1),
                              test_scores_batch.mean(axis=1)) 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:24,代码来源:test_validation.py

示例5: test_classifier_accuracy

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_classifier_accuracy():
    for data in (X, X_csr):
        for fit_intercept in (True, False):
            for average in (False, True):
                clf = PassiveAggressiveClassifier(
                    C=1.0, max_iter=30, fit_intercept=fit_intercept,
                    random_state=1, average=average, tol=None)
                clf.fit(data, y)
                score = clf.score(data, y)
                assert_greater(score, 0.79)
                if average:
                    assert hasattr(clf, 'average_coef_')
                    assert hasattr(clf, 'average_intercept_')
                    assert hasattr(clf, 'standard_intercept_')
                    assert hasattr(clf, 'standard_coef_')


# 0.23. warning about tol not having its correct default value. 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:20,代码来源:test_passive_aggressive.py

示例6: test_classifier_partial_fit

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_classifier_partial_fit():
    classes = np.unique(y)
    for data in (X, X_csr):
        for average in (False, True):
            clf = PassiveAggressiveClassifier(
                C=1.0, fit_intercept=True, random_state=0,
                average=average, max_iter=5)
            for t in range(30):
                clf.partial_fit(data, y, classes)
            score = clf.score(data, y)
            assert_greater(score, 0.79)
            if average:
                assert hasattr(clf, 'average_coef_')
                assert hasattr(clf, 'average_intercept_')
                assert hasattr(clf, 'standard_intercept_')
                assert hasattr(clf, 'standard_coef_')


# 0.23. warning about tol not having its correct default value. 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:21,代码来源:test_passive_aggressive.py

示例7: test_class_weights

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_class_weights():
    # Test class weights.
    X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                   [1.0, 1.0], [1.0, 0.0]])
    y2 = [1, 1, 1, -1, -1]

    clf = PassiveAggressiveClassifier(C=0.1, max_iter=100, class_weight=None,
                                      random_state=100)
    clf.fit(X2, y2)
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))

    # we give a small weights to class 1
    clf = PassiveAggressiveClassifier(C=0.1, max_iter=100,
                                      class_weight={1: 0.001},
                                      random_state=100)
    clf.fit(X2, y2)

    # now the hyperplane should rotate clock-wise and
    # the prediction on this point should shift
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1]))


# 0.23. warning about tol not having its correct default value. 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:25,代码来源:test_passive_aggressive.py

示例8: test_equal_class_weight

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_equal_class_weight():
    X2 = [[1, 0], [1, 0], [0, 1], [0, 1]]
    y2 = [0, 0, 1, 1]
    clf = PassiveAggressiveClassifier(
        C=0.1, max_iter=1000, tol=None, class_weight=None)
    clf.fit(X2, y2)

    # Already balanced, so "balanced" weights should have no effect
    clf_balanced = PassiveAggressiveClassifier(
        C=0.1, max_iter=1000, tol=None, class_weight="balanced")
    clf_balanced.fit(X2, y2)

    clf_weighted = PassiveAggressiveClassifier(
        C=0.1, max_iter=1000, tol=None, class_weight={0: 0.5, 1: 0.5})
    clf_weighted.fit(X2, y2)

    # should be similar up to some epsilon due to learning rate schedule
    assert_almost_equal(clf.coef_, clf_weighted.coef_, decimal=2)
    assert_almost_equal(clf.coef_, clf_balanced.coef_, decimal=2)


# 0.23. warning about tol not having its correct default value. 
开发者ID:PacktPublishing,项目名称:Mastering-Elasticsearch-7.0,代码行数:24,代码来源:test_passive_aggressive.py

示例9: test_model_passive_aggressive_classifier_binary_class

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_model_passive_aggressive_classifier_binary_class(self):
        model, X = fit_classification_model(
            PassiveAggressiveClassifier(random_state=42), 2)
        model_onnx = convert_sklearn(
            model,
            "scikit-learn PassiveAggressiveClassifier binary",
            [("input", FloatTensorType([None, X.shape[1]]))],
            target_opset=TARGET_OPSET
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnPassiveAggressiveClassifierBinary-Out0",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
开发者ID:onnx,项目名称:sklearn-onnx,代码行数:22,代码来源:test_sklearn_passive_aggressive_classifier_converter.py

示例10: test_model_passive_aggressive_classifier_multi_class

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_model_passive_aggressive_classifier_multi_class(self):
        model, X = fit_classification_model(
            PassiveAggressiveClassifier(random_state=42), 5)
        model_onnx = convert_sklearn(
            model,
            "scikit-learn PassiveAggressiveClassifier multi-class",
            [("input", FloatTensorType([None, X.shape[1]]))],
            target_opset=TARGET_OPSET
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnPassiveAggressiveClassifierMulti-Out0",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
开发者ID:onnx,项目名称:sklearn-onnx,代码行数:22,代码来源:test_sklearn_passive_aggressive_classifier_converter.py

示例11: test_model_passive_aggressive_classifier_binary_class_int

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_model_passive_aggressive_classifier_binary_class_int(self):
        model, X = fit_classification_model(
            PassiveAggressiveClassifier(random_state=42), 2, is_int=True)
        model_onnx = convert_sklearn(
            model,
            "scikit-learn PassiveAggressiveClassifier binary",
            [("input", Int64TensorType([None, X.shape[1]]))],
            target_opset=TARGET_OPSET
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnPassiveAggressiveClassifierBinaryInt-Out0",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
开发者ID:onnx,项目名称:sklearn-onnx,代码行数:22,代码来源:test_sklearn_passive_aggressive_classifier_converter.py

示例12: test_model_passive_aggressive_classifier_multi_class_int

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_model_passive_aggressive_classifier_multi_class_int(self):
        model, X = fit_classification_model(
            PassiveAggressiveClassifier(random_state=42), 5, is_int=True)
        model_onnx = convert_sklearn(
            model,
            "scikit-learn PassiveAggressiveClassifier multi-class",
            [("input", Int64TensorType([None, X.shape[1]]))],
            target_opset=TARGET_OPSET
        )
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnPassiveAggressiveClassifierMultiInt-Out0",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
开发者ID:onnx,项目名称:sklearn-onnx,代码行数:22,代码来源:test_sklearn_passive_aggressive_classifier_converter.py

示例13: test_partial_fit

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_partial_fit():
    est = PassiveAggressiveClassifier(random_state=0, shuffle=False,
                                      max_iter=5, tol=None)
    transformer = SelectFromModel(estimator=est)
    transformer.partial_fit(data, y,
                            classes=np.unique(y))
    old_model = transformer.estimator_
    transformer.partial_fit(data, y,
                            classes=np.unique(y))
    new_model = transformer.estimator_
    assert_true(old_model is new_model)

    X_transform = transformer.transform(data)
    transformer.fit(np.vstack((data, data)), np.concatenate((y, y)))
    assert_array_equal(X_transform, transformer.transform(data))

    # check that if est doesn't have partial_fit, neither does SelectFromModel
    transformer = SelectFromModel(estimator=RandomForestClassifier())
    assert_false(hasattr(transformer, "partial_fit")) 
开发者ID:alvarobartt,项目名称:twitter-stock-recommendation,代码行数:21,代码来源:test_from_model.py

示例14: test_classifier_correctness

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_classifier_correctness():
    y_bin = y.copy()
    y_bin[y != 1] = -1

    for loss in ("hinge", "squared_hinge"):

        clf1 = MyPassiveAggressive(
            C=1.0, loss=loss, fit_intercept=True, n_iter=2)
        clf1.fit(X, y_bin)

        for data in (X, X_csr):
            clf2 = PassiveAggressiveClassifier(
                C=1.0, loss=loss, fit_intercept=True, max_iter=2,
                shuffle=False, tol=None)
            clf2.fit(data, y_bin)

            assert_array_almost_equal(clf1.w, clf2.coef_.ravel(), decimal=2) 
开发者ID:alvarobartt,项目名称:twitter-stock-recommendation,代码行数:19,代码来源:test_passive_aggressive.py

示例15: test_class_weights

# 需要导入模块: from sklearn import linear_model [as 别名]
# 或者: from sklearn.linear_model import PassiveAggressiveClassifier [as 别名]
def test_class_weights():
    # Test class weights.
    X2 = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0],
                   [1.0, 1.0], [1.0, 0.0]])
    y2 = [1, 1, 1, -1, -1]

    clf = PassiveAggressiveClassifier(C=0.1, max_iter=100, class_weight=None,
                                      random_state=100)
    clf.fit(X2, y2)
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1]))

    # we give a small weights to class 1
    clf = PassiveAggressiveClassifier(C=0.1, max_iter=100,
                                      class_weight={1: 0.001},
                                      random_state=100)
    clf.fit(X2, y2)

    # now the hyperplane should rotate clock-wise and
    # the prediction on this point should shift
    assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) 
开发者ID:alvarobartt,项目名称:twitter-stock-recommendation,代码行数:22,代码来源:test_passive_aggressive.py


注:本文中的sklearn.linear_model.PassiveAggressiveClassifier方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。